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Abstract—In noisy and reverberant environments, the problem

of acoustic source localisation and tracking (ASLT) using an array
of microphones presents a number of challenging difficulties. One

of the main issues when considering real-world situations involving

human speakers is the temporally discontinuous nature of speech

signals: the presence of silence gaps in the speech can easily misguide
the tracking algorithm, even in practical environments with low to

moderate noise and reverberation levels. This work focuses on a real-

time implementation of the ASLT algorithm proposed in [1], which

circumvents this problem by integrating measurements from a voice
activity detector (VAD) within the tracking algorithm framework.

The algorithm is here optimized for low computational complexity,

and is implemented on a PC based real-time system. The resulting
computational load is calculated and is presented along with real

measurements of the true execution speed for the considered algorithm

implementation. The results show that the algorithm is suitable for

implementation in currently existing low-power embedded systems.

I. INTRODUCTION

The concept of speaker tracking using an array of acoustic sen-

sors has become an increasingly important field of research over the

last few years [2–5]. Typical applications such as teleconferencing,

automated multi-media capture, smart meeting rooms and lecture

theaters, etc., are fast becoming an engineering reality. This in turns

requires the development of increasingly sophisticated algorithms

to deal efficiently with problems related to background noise and

acoustic reverberation during the speech acquisition process. Fur-

thermore, these algorithms must also be computationally efficient

in order to be suitable for real-time implementation.

One of the major difficulties in a practical implementation

of ASLT for speech-based applications lies in the nonstationary

character of typical speech signals, with potentially significant

silence periods existing between separate utterances. During such

silence gaps, currently available ASLT methods will usually keep

updating the source location estimates as if the speaker was still

active. The algorithm is therefore likely to momentarily lose track

of the true source position since the updates are then based solely

on disturbance sources such as reverberation and background noise,

whose influence might be quite significant in practice. Conse-

quently, existing works on speaker tracking implicitly rely on the

fact that silence periods in the speech signal remain relatively short

[2–5].

The work presented in [1] deals with this specific issue by fusing

VAD observations within the statistical framework of a sequential

Monte Carlo algorithm (particle filter, PF). Simulation results of

this algorithm, denoted PF-VAD, are provided in [1] on the basis

of synthetic audio data generated with the image method [6], and

in [7] using samples of real audio data recorded in a reverberant

room. These simulations show that the newly proposed ASLT

algorithm has the potential to drastically outperform more basic
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PF implementations that do not integrate VAD data, such as those

presented in [3]. While these initial off-line simulations are useful

to gauge the algorithm’s ability to deal with the considered ASLT

problem, they give little insight into how suitable the algorithm

actually is for a practical, real-world implementation.

This paper presents a real-time implementation of the ASLT

method presented in [1]. Below is a brief review of the theoretical

concepts behind the algorithm (as it appears in [7]), followed by

an in-depth description of the implementation including an analysis

of the computational complexity. The The paper concludes with

an example of the real-time tracking results obtained with the

developed system for the case of a human speaker walking across

a reverberant and noisy room.

II. BAYESIAN FILTERING FOR TARGET TRACKING

Consider an array of M acoustic sensors distributed at known

locations in a reverberant environment. Assuming a single sound

source, the problem consists in estimating the location of this

“target” based on the signals fm(t), m∈{1, . . . , M}, provided by
the array. It is further assumed that the sensor signals are sampled

in time, and subsequently decomposed into a series of successive

frames k = 1, 2, . . . , of equal length L before being processed.

A. State-Space Filtering

Let Xk represent the state variable for time frame k, corre-
sponding to the position and velocity of the target in the state space:

Xk = [xk yk ẋk ẏk]T. At any time step, each microphone in the
array delivers a frame of audio signal which can be processed using

some localization technique, such as steered beamforming (SBF).

Let Yk denote the observation variable (measurement), which here

typically corresponds to the localization information resulting from

the SBF processing of the audio signals. Using a Bayesian filtering

approach and assuming Markovian dynamics, this system can be

globally represented as follows:

Xk = g(Xk−1,uk) , (1a)

Yk = h(Xk, vk) , (1b)

where g(·) and h(·) are possibly nonlinear functions, and uk and vk

are possibly non-Gaussian noise variables. Ultimately, one would

like to compute the so-called posterior probability density function

(PDF) p(Xk|Y1:k), where Y1:k = {Y1, . . . ,Yk} represents the
concatenation of all measurements up to time k. This density con-
tains all the statistical information available regarding the current

condition of the state variable Xk, and an estimate bXk of the state

then follows, for instance, as the mean or the mode of p(Xk|Y1:k).

B. Sequential Monte Carlo Approach

Particle filtering (PF) is an approximation technique that solves

the above Bayesian filtering problem by representing the posterior
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density as a set of N samples of the state space X
(n)
k (particles)

with associated weights w
(n)
k , n ∈ {1, . . . , N}, see, e.g., [8].

The so-called bootstrap algorithm [9] is an attractive PF variant

due to its simplicity and low computational demands. Assuming

that the set of particles and weights {(X
(n)
k−1, w

(n)
k−1)}

N
n=1 is a

discrete representation of the posterior density at time k − 1,
p(Xk−1|Y1:k−1), and given the observation Yk obtained at the

current time k, the bootstrap PF algorithm forms a new set of
particles and weights {(X

(n)
k , w

(n)
k )}N

n=1, which is an approximate

representation of the current posterior p(Xk|Y1:k). An estimate
ℓ̂k of the source position for the current time step k can then be
computed according to

ℓ̂k = E
˘
ℓk

¯
≈

NX

n=1

w
(n)
k ℓ

(n)
k ,

where ℓ
(n)
k = [x

(n)
k y

(n)
k ]T corresponds to the location information

in the n-th particle vector. A second output from the PF algorithm
is a measure of the confidence level in the PF estimates, which can

be obtained by computing the standard deviation of the particle set:

ςk =

vuut
NX

n=1

w
(n)
k

‚‚ℓ
(n)
k − ℓ̂k

‚‚2
,

where ‖ ·‖ denotes the Euclidean norm. The parameter ςk provides

a direct assessment of how reliable the PF considers its current

source position estimate to be.

III. PF FOR ACOUSTIC SOURCE TRACKING

The bootstrap PF algorithm requires the definition of two

important concepts [9]: the source dynamics (through the transition

function g(·)) and the so-called likelihood function p(Yk|X
(n)
k ),

n ∈ {1, . . . , N}.

A. Target Dynamics

In order to remain consistent with previous ASLT literature [3,

4], a Langevin process is used to model the dynamics equation

(1a). This process is typically used to characterize’ various types

of stochastic motion, and it has proved to be a good choice for

speaker tracking. With this model, the source motion in each of the

Cartesian coordinates is assumed to be an independent first-order

Markov process.

B. Likelihood Function

The SBF principle is used here as a basis for the derivation

of the likelihood function. With Fm(ω) = F{fm(t)} the Fourier
transform of the signal data from the m-th sensor, the output P(ℓ)
of a delay-and-sum beamformer steered to the location ℓ = [x y]T

is

P(ℓ) =

Z

Ω

˛̨
˛

MX

m=1

Wm(ω)Fm(ω) ejω‖ℓ−ℓm‖/c
˛̨
˛
2

dω , (2)

where c = 343m/s represents the propagation speed of acoustic
waves, ℓm = [xm ym]T is the known position of the m-th
microphone, and Ω corresponds to the frequency range of interest,
typically defined as Ω = {ω | 2π · 300Hz 6 ω 6 2π · 3000Hz}
for speech processing applications. The frequency weighting term

Wm(·) is computed according to the PHAT (phase transform)
weighting, i.e., Wm(ω) = 1/|Fm(ω)|.
In the PF-VAD implementation, an approach based on the con-

cept of a “pseudo-likelihood” is adopted, as introduced previously

in [3]. This concept relies on the idea that the SBF output P(·)

itself can be used as a measure of likelihood. For the n-th particle,
the likelihood PDF is therefore defined as

p(Yk|X
(n)
k ) = q0 · U(ℓ

(n)
k ) + γ (1 − q0) ·

ˆ
P(ℓ

(n)
k )

˜r
, (3)

where U(·) is the uniform PDF defined over the considered room
boundaries, q0 is the prior probability that an SBF measurement

might originate from clutter, and the nonlinear exponent r is used
to help shape the SBF output to make it more amenable to source

tracking [3]. The parameter γ is a normalization constant ensuring
that the two PDFs in the mixture likelihood definition of (3) are

properly scaled with respect to each other [1].

IV. FUSION OF VAD MEASUREMENTS

A. Voice Activity Detection

The voice activity detector (VAD) employed in [1] is based

on the work presented by Davis et al. in [10]. The VAD relies

on an estimate of the instantaneous signal-to-noise ratio (SNR) in

the current signal frame. It assumes that the data recorded at the

microphones is an additive combination of the clean speech signal

and noise.

The scheme works on the basis of the average noise power

spectral density, which is estimated during nonspeech periods. The

estimated noise level, which is assumed to vary slowly in relation

to the speech power, is then used during periods of speech activity

to estimate the SNR from the observed signal. The assumption is

that the speaker is active when the frequency-averaged SNR level

is higher than a given threshold, which is set in such a way as to

minimize’ the occurrence of false alarms.

The spectral resolution, i.e., the number D of considered sub-
bands, is set to a value much lower than the frame length L in order
to reduce the variance of the signal power estimates. The specific

application considered here also makes it possible to further reduce

the variance by averaging over multiple microphones.

B. VAD Fusion

The output of the VAD can be linked to the probability q0

in (3) in an obvious manner. The probability 1 − q0 corresponds

to the likelihood of the acoustic source being active (non-clutter

SBF measurement), an estimate of which is delivered by the VAD.

Therefore, instead of setting the variable q0 to a constant value in

the design of the algorithm as done in [3, 4], the following time-

varying definition of q0 is used: q0(k) = 1 − α(k), with α(k) ∈
[0, 1] the soft-decision output from the VAD algorithm (where 1
denotes speech and 0 nonspeech). In the current implementation,
α(k) corresponds to the estimated speech signal level, derived from
the SNR and noise power estimates delivered by the VAD.

V. IMPLEMENTATION

The algorithm is implemented in software executed on a stan-

dard PC. The implementation uses single precision floating point

arithmetic and is written in the C programming language. The

microphone array is connected to the PC using a multi-channel

analog input/output (I/O) card.

A. Hardware Configuration

The PC is a standard IBM-PC, equipped with a 1.8GHz AMD
Athlon processor and 512MB of memory. The operating system
on the PC is Debian GNU/Linux version 3.0. The kernel version

is 2.6.8, and is compiled with preemptive multitasking.

The microphone array consists of eight elements which are

mounted on a metal fixture in an octagonal pattern (see Figure 2).



TABLE I

FLOATING POINT OPERATIONS PER DATA FRAME.

Operation FFT VAD PF

Real divisions 4D + 10 MLr

Real additions 25D + L(M + 1)/2 MLr + N(2Lr + 2MR + 4R + 2)
Real multiplications 9D + 3L(M + 1)/2 2MLr + N(2Lr + MR + 5M + 4R + 8)
Complex to real multiplications MLr

Complex additions ML/2 log2(L/2) MLrN
Complex multiplications ML/2 log2(L/2) 2MLrN
Real square root D + 4 M(Lr + 2N)
Complex exponential N(2M + 1)
Pseudo random number N(R + 2)

f2(t)

α(k)

fM (t)

f1(t)

ςkF
F
T

P
F

V
A
D
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Fig. 1. Block diagram showing the integration of the PF and the VAD.

The microphones are connected to a preamplifier which in turn

is connected to the I/O card. The microphone elements, model

2541/PRM902, and the preamplifier, model 2210, are from Larson

Davis. The I/O card has 24-bit analog-to-digital converters with

built-in anti-aliasing filters and is operated at a sample frequency

of 16 kHz. The card is an M-Audio Delta-1010LT.

B. Software

Both the beamformer in the PF and the power spectrum estima-

tion in the VAD can be implemented using an FFT. This makes it

possible to further integrate the two sub-algorithms and thereby

reduce the computational complexity, see Figure 1. The delay-

and-sum beamformer in (2) is the most critical part in terms of

computational complexity, since it has to be executed N times per
frame for the computation of the likelihood function in (3). Here,

it is implemented according to

P(ℓ) =

L1X

l=L0

˛̨
˛

MX

m=1

Gm(ωl) e
jωl‖ℓ−ℓm‖/c

˛̨
˛
2

, (4)

where ωl = 2πl/L, L0 and L1 define the frequency range of

interest, and Gm(ω) = Wm(ω) · Fm(ω). The computational
complexity in the inner loop is reduced by rewriting the complex

exponential in (4) according to

e
jωl+1‖ℓ−ℓm‖/c = ej(ωl+ω1)‖ℓ−ℓm‖/c

= ejωl‖ℓ−ℓm‖/c · ejω1‖ℓ−ℓm‖/c
. (5)

Thus, the exponential term for frequency band l in (4) can be
computed recursively using the corresponding term for band l −

TABLE II

CLOCK CYCLES PER INPUT SAMPLE FOR EACH SUB-ALGORITHM. THE

RIGHT MOST COLUMN LISTS THE NUMBER OF FLOATING POINT

OPERATIONS PER SECOND (FLOPS) AT 16 KHZ SAMPLE FREQUENCY.

FFT VAD PF Total FLOPS

Theoretical 256 21.2 3.34k 3.62k 57.9M
Measured 225 53.7 4.19k 4.47k 71.5M

1 multiplied by the constant ejω1‖ℓ−ℓm‖/c, which is calculated

only once for each particle. Experiments showed that this code

optimization reduced the computational complexity by a factor 10.

The computational load for the different parts of the imple-

mentation is found in Table I, where Lr = L1 − L0 + 1, and
R denotes the considered number of room dimensions (typically
2 or 3, for either a two or three-dimensional problem definition).

The table is calculated considering a worst case scenario (e.g.,

when considering the execution of conditional algorithm sections).

The computations required for the data fusion is included in the

computational complexity for the VAD. The table shows that the

bulk of the computations is in the particle filter, signifying that

the new algorithm is not much more computationally complex

compared to a traditional PF.

The actual number of clock cycles spent in each sub-algorithm

has been measured by reading the time stamp counter (TSC)

in the CPU. The results are presented in Table II along with

theoretical number of floating point operations. The theoretical

values have been obtained by inserting actual numerical values

in the equations given in Table I. The discrepancy between the

measured and real values lies in the function calls overhead, integer

operations, pipeline utilization, cache faults and a large number

of branch instructions for the VAD. The parameters used for the

implementation are N = 100, D = 8, L = 512, R = 2,
Lr = 86 and M = 8. The total CPU usage for the algorithm
process during execution was around 5%, which is consistent with

the 71.5MFLOPS computational load plus overhead for data acqui-
sition. The results shows that the considered algorithm has a rather

low overall computational complexity and can run comfortably on

a system made up of widely available and low-cost hardware.

VI. EXPERIMENTAL RESULTS

A. Environmental Setup

An array of M = 8 omnidirectional microphones was set
up at a constant height of 1.51m in a room with dimensions
3.5m × 3.1m × 2.2m, in a octagonal pattern with one sensor
pair on each wall, as shown in Figure 2. The distance between

the sensors in each pair is 0.8m, and the total area spanned by the



array is 2.52m× 2.52m. The acoustic of the room was controlled
by padding the walls of the room with sound absorbing material

to achieve a reverberation time T60 ≈ 270ms (frequency-averaged
up to 24 kHz).

B. Source Position Measurements

Ground-truth measurements of the real speaker trajectory over

time were extracted from the microphone signals using the method

described in [7], which works on the basis of a high-accuracy

beamformer scanning the considered enclosure. The microphone

signals are split into successive frames of 32ms of data, with a
50% overlapping factor. Each frame is processed using the SBF
formula in (2), at first computed on a relatively coarse grid across

the entire search space. A coarse estimate of the current source

position is obtained as the location maximizing this SBF output,

this estimate is then refined by considering a high-resolution grid

(uniform 1mm spacing between grid points) centered around the
region of interest. An approximate knowledge of the overall source

path across the room, combined with the use of some voice activity

detection scheme, allows the easy discrimination of outliers and

yields a series of two-dimensional location data points vs. time.

Finally, a polynomial approximation is fitted to the SBF localization

data in order to obtain an estimate of the true source trajectory over

the entire audio sample length.

C. Real-Time Tracking

A male speaker, moving randomly across the room while

uttering a series of sentences, was tracked using the implemented

real-time algorithm. Background noise was added with a signal-

to-noise ratio of approximately 20 dB by means of a number of
loudspeakers emitting white Gaussian noise.

The software program saves the audio data along with the

estimated source position to disk during execution. A typical

tracking result obtained with the above setup is depicted in Figure 2,

along with the sound picked up by one of the microphones. The plot

shows that a successful and accurate tracking is achieved during

periods of speech activity. A typical example of temporary track

loss resulting from a nonspeech period can be observed in Figure 2

towards the end of the simulation, where the estimates slightly

deviate from the true source trajectory. The considered algorithm

is however able to successfully resume tracking when the speaker

becomes active again.

D. Tracking Movies

In order to test the implemented algorithm under various condi-

tions, a series of experiments were conducted with different speak-

ers and source trajectories. The data recorded by the real-time sys-

tem described in this paper was used to generate multi-media files

of the tracking results. These movies demonstrate the effectiveness

of the real-time implementation with a clarity that would be difficult

to match with figures and/or tables. The movies also include the

standard deviation output ςk from the algorithm, drawn as an ellipse

around the estimated source position. These files can be downloaded

from http://www.watri.org.au/˜ajh/research/.

VII. CONCLUSIONS

The ASLT algorithm presented in [1] has been implemented and

evaluated in a real-time system. The results from the evaluation
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Fig. 2. Real-time tracking of human speaker walking in noisy room. The
top plot shows an example of signal recorded by one of the microphones.

show that the algorithm is suitable for real-world implementations.

The computational complexity is low enough for a real-time pro-

cessing on low-power embedded systems using currently existing

hardware, and the performance is good enough to successfully track

a moving speaker in an acoustically adverse environment.
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