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In noisy and reverberant environments, the problem of acoustic source localisation and tracking (ASLT) using an array of mi-
crophones presents a number of challenging difficulties. One of the main issues when considering real-world situations involving
human speakers is the temporally discontinuous nature of speech signals: the presence of silence gaps in the speech can easily
misguide the tracking algorithm, even in practical environments with low to moderate noise and reverberation levels. A natural
extension of currently available sound source tracking algorithms is the integration of a voice activity detection (VAD) scheme.
We describe a new ASLT algorithm based on a particle filtering (PF) approach, where VAD measurements are fused within the
statistical framework of the PF implementation. Tracking accuracy results for the proposed method is presented on the basis of
synthetic audio samples generated with the image method, whereas performance results obtained with a real-time implementation
of the algorithm, and using real audio data recorded in a reverberant room, are published elsewhere. Compared to a previously
proposed PF algorithm, the experimental results demonstrate the improved robustness of the method described in this work when
tracking sources emitting real-world speech signals, which typically involve significant silence gaps between utterances.
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1. INTRODUCTION

The concept of speaker localisation and tracking using an ar-
ray of acoustic sensors has become an increasingly important
field of research over the last few years [1–3]. Typical applica-
tions such as teleconferencing, automated multi-media cap-
ture, smart meeting rooms and lecture theatres, and so forth,
are fast becoming an engineering reality. This in turn requires
the development of increasingly sophisticated algorithms to
deal efficiently with problems related to background noise
and acoustic reverberation during the audio data acquisition
process.

A major part of the literature on the specific topic of
acoustic source localisation and tracking (ASLT) typically
focuses on implementations involving human speakers [1–
9]. One of the major difficulties in a practical implementa-
tion of ASLT for speech-based applications lies in the non-
stationary character of typical speech signals, with poten-
tially significant silence periods existing between separate ut-
terances. During such silence gaps, currently available ASLT
methods will usually keep updating the source location es-
timates as if the speaker was still active. The algorithm is
therefore likely to momentarily lose track of the true source

position since the updates are then based solely on distur-
bance sources such as reverberation and background noise,
whose influence might be quite significant in practical sit-
uations. Whether the algorithm recovers from this momen-
tary tracking error or not, and how fast the recovery pro-
cess occurs, is mainly determined by how long the silence gap
lasts. Consequently, existing works on acoustic source track-
ing either implicitly rely on the fact that silence periods in
the considered speech signal remain relatively short [2–5], or
alternatively, assume a stationary source signal, as in vehicle
tracking applications for instance [10, 11].

In the present work, we address this specific problem by
presenting a new algorithm for ASLT that includes the data
obtained from a voice activity detector (VAD) as an inte-
gral part of the target-tracking process. To the best of our
knowledge, this fusion problem is yet to be considered in the
acoustic source tracking literature, despite the fact that this
approach can be regarded as a natural extension of currently
existing ASLT algorithms developed for speech-based appli-
cations. In this paper, we use an approach based on a particle
filtering (PF) concept similar to that used previously in [2],
and show how the VAD measurement modality can be effi-
ciently fused within the statistical framework of sequential
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Monte Carlo (SMC) methods. Rather than simply using this
additional measurement in the derivation of a mixed-mode
likelihood, we consider the VAD data as a prior probabil-
ity that the source localisation observations originate from
the true source. As a result, the proposed particle filter, de-
noted PF-VAD, integrates the VAD data at a low level in the
PF algorithm development. It hence benefits from the var-
ious advantages inherent to SMC methods (nonlinear and
non-Gaussian processing) and is able to deal efficiently with
significant gaps in the speech signal.

This paper is organised as follows. The next section first
provides a generic definition of the considered tracking prob-
lem, and then briefly reviews the basic principles of Bayesian
filtering (state-space approach). In Section 3, we derive the
theoretical concepts required by the PF methodology on the
basis of the specific ASLT problem definition; the derivation
of this statistical framework then allows the integration of
VAD measurements within the PF algorithm. Section 4 con-
tains a review of the VAD scheme used in this work (based
on [12]), and we then update this basic scheme for the spe-
cific speaker tracking purpose considered in this work. We
further derive three different types of VAD outputs (consid-
ering both hard and soft decisions) to be used within the PF
algorithm, and the proposed PF-VAD method is finally pre-
sented in Section 5. A performance assessment of this algo-
rithm is then given in Section 6, which also includes the re-
sults obtained with a PF method previously developed in [2]
for comparison purposes. The paper finally concludes with a
summary of the results and some future work considerations
in Section 7.

2. BAYESIAN FILTERING FOR TARGET TRACKING

2.1. ASLT problem definition

Consider an array of M acoustic sensors distributed at
known locations in a reverberant environment with known
acoustic wave propagation speed c. For a typical applica-
tion of speaker tracking, the microphones are usually scat-
tered around the considered enclosure in such a way that
the acoustic source always remains within the interior of the
sensor array. This type of setup allows for a better localisa-
tion accuracy compared to, for instance, a concentrated lin-
ear or circular array. Assuming a single sound source, the
problem consists in estimating the location of this “target”
in the current coordinate system based on the signals fm(t),
m ∈ {1, . . . ,M}, provided by the microphones. It is further
assumed that the sensor signals are sampled in time and de-
composed into a series of successive frames k = 1, 2, . . . , of
equal length L before being processed. The problem is then
considered on the basis of the discrete-time variable k.

Note that the derivations presented in this work focus on
a two-dimensional problem setting where the height of the
source is considered known, or of no particular importance.
The acoustic sensors are therefore placed at a constant height
in the enclosure, and the aim is to ultimately provide a two-
dimensional estimate of the source location on this horizon-
tal plane only. The following developments can however be
easily generalised to include the third dimension if necessary.

2.2. State-space filtering

Assuming that a Cartesian coordinate system with known
origin has been defined for the considered tracking problem,
let Xk represent the state variable for time frame k, corre-
sponding to the position [xk yk]T and velocity [ẋk ẏk]T of
the target in the state space:

Xk =
[
xk yk ẋk ẏk

]T
. (1)

At any time step k, each microphone in the array delivers a
frame of audio signal which can be processed using some
localisation technique such as, for instance, steered beam-
forming (SBF) or time-delay estimation (TDE). Let Yk de-
note the observation variable (measurement) which, in the
case of ASLT, typically corresponds to the localisation infor-
mation resulting from this preprocessing of the audio signals.

Using a Bayesian filtering approach and assuming Mark-
ovian dynamics, this system can be globally represented by
means of the following two equations [13]:

Xk = g
(

Xk−1, uk
)
, (2a)

Yk = h
(

Xk, vk
)
, (2b)

where g(·) and h(·) are possibly nonlinear functions, and
uk and vk are possibly non-Gaussian noise variables. Ul-
timately, one would like to compute the so-called poste-
rior probability density function (PDF) p(Xk | Y1:k), where
Y1:k = {Y1, . . . , Yk} represents the concatenation of all mea-
surements up to time k. The density p(Xk | Y1:k) contains
all the statistical information available regarding the current
condition of the state variable Xk, and an estimate X̂k of the
state then follows, for instance, as the mean or the mode of
this PDF.

The solution to this Bayesian filtering problem consists
of the following two steps of prediction and update [14]. As-
suming that the posterior density p(Xk−1 | Y1:k−1) is known
at time k − 1, the posterior PDF p(Xk | Y1:k) for the current
time step k can be computed using the following equations:

p
(

Xk | Y1:k−1
) =

∫
p
(

Xk | Xk−1
)
p
(

Xk−1 | Y1:k−1
)

dXk−1,

p
(

Xk | Y1:k
)∝ p

(
Yk | Xk

)
p
(

Xk | Y1:k−1
)
,

(3)

where p(Xk | Xk−1) is the transition density, and p(Yk | Xk)
is the so-called likelihood function.

2.3. Sequential Monte Carlo (SMC) approach

Particle filtering (PF) is an approximation technique that
solves the Bayesian filtering problem by representing the pos-

terior density as a set of N samples of the state space X(n)
k

(particles) with associated weights w(n)
k , n ∈ {1, . . . ,N}, see,

for example, [14]. The implementation of SMC methods
represents a powerful tool in the sense that they can be effi-
ciently applied to nonlinear and/or non-Gaussian problems,
contrary to other approaches such as the Kalman filter and



E. A. Lehmann and A. M. Johansson 3

its derivatives. Originally proposed by Gordon et al. [15],
the so-called bootstrap algorithm is an attractive PF vari-
ant due to its simplicity of implementation and low com-
putational demands. Assuming that the set of particles and

weights {(X(n)
k−1,w(n)

k−1)}Nn=1 is a discrete representation of the
posterior density at time k − 1, p(Xk−1 | Y1:k−1), the generic
iteration update for the bootstrap PF algorithm is given in
Algorithm 1. Following this iteration, the new set of particles

and weights {(X(n)
k ,w(n)

k )}Nn=1 is approximately distributed as
the current posterior density p(Xk | Y1:k). The sample set ap-
proximation of the posterior PDF can then be obtained using

p
(

Xk | Y1:k
) ≈

N∑

n=1

w(n)
k δ

(
Xk −X(n)

k

)
, (4)

where δ(·) is the Dirac delta function, and an estimate X̂k of
the target state for the current time step k follows as

X̂k =
∫

Xk · p
(

Xk | Y1:k
)

dXk (5a)

≈
N∑

n=1

w(n)
k X(n)

k . (5b)

It can be shown that the variance of the weights w(n)
k can

only increase over time, which decreases the overall accuracy
of the algorithm. This constitutes the so-called degeneracy
problem, known to affect PF implementations. The condi-
tional resampling step in Algorithm 1 is introduced as way to
mitigate these effects. This resampling process can be easily
implemented using a scheme based on a cumulative weight
function, see, for example, [15]. Alternatively, several other
resampling methods are also available from the particle fil-
tering literature [14].

The main disadvantage of the bootstrap algorithm is that
during the prediction step, the particles are relocated in the
state space without knowledge of the current measurement
Yk. Some regions of the state space with potentially high pos-
terior likelihood might hence be omitted during the itera-
tion. Despite this drawback, this algorithm constitutes a good
basis for the evaluation of particle filtering methods in the
context of the current application, keeping in mind that the
use of a more elaborate PF method would also increase the
accuracy of the resulting tracking algorithm.

3. PF FOR ACOUSTIC SOURCE TRACKING

The particle filtering concepts presented in this section are
based upon those derived previously in [2], where a sequen-
tial estimation framework was developed for the specific
problem of acoustic source localisation and tracking. More
information on this topic can be found in this publication
and the references cited therein if necessary.

From Algorithm 1, it can be seen that the particle filtering
method involves the definition of two important concepts:
the source dynamics (through the transition function g(·))
and the likelihood function p(Yk | Xk), which are derived in
the sequel.

Assumption: at time k − 1, the set of particles X(n)
k−1 and

weights w(n)
k−1, n ∈ {1, . . . ,N}, is a discrete representation of

the posterior p(Xk−1 | Y1:k−1).

Iteration: given the observation Yk obtained at the current
time k, update the particle set as follows:

(1) Prediction: propagate the particles through the transition
equation, X̃(n)

k = g(X(n)
k−1, uk).

(2) Update: assign each particle a likelihood weight, w̃(n)
k =

w(n)
k−1 · p(Yk | X̃(n)

k ), then normalize the weights:

w(n)
k = w̃(n)

k ·
( N∑

i=1

w̃(i)
k

)−1

. (6)

(3) Resampling: compute the effective sample size,

Neff =
( N∑

n=1

(
w(n)
k

)2
)−1

. (7)

If Neff is above some predefined threshold Nthr, simply define
X(n)
k = X̃(n)

k ∀n. Otherwise, draw N new samples X(n)
k ,

n ∈ {1, . . . ,N}, from the existing set of particles {X̃(i)
k }Ni=1

according to their weights w(i)
k , then reset the weights to

uniform values: w(n)
k = 1/N ∀n.

Result: the set {(X(n)
k ,w(n)

k )}Nn=1 is approximately distributed
as the posterior density p(Xk | Y1:k).

Algorithm 1: Generic bootstrap PF algorithm.

3.1. Target dynamics

In order to remain consistent with previous literature [2, 3],
a Langevin process is used to model the target dynamics
in (2a). This model is typically used to characterise various
types of stochastic motion, and it has proved to be a good
choice for acoustic speaker tracking. The source motion in
each of the Cartesian coordinates is assumed to be an inde-
pendent first-order process, which can be described by the
following equation:

Xk =

⎡
⎢⎢⎢⎢⎣

1 0 aTu 0

0 1 0 aTu

0 0 a 0

0 0 0 a

⎤
⎥⎥⎥⎥⎦
·Xk−1 +

⎡
⎢⎢⎢⎢⎣

bTu 0

0 bTu

b 0

0 b

⎤
⎥⎥⎥⎥⎦
· uk , (8a)

with the noise variable

uk ∼ N

([
0
0

]
,

[
1 0
0 1

])
, (8b)

where N (μ,Σ) denotes the density of a multidimensional
Gaussian random variable with mean vector μ and covari-
ance matrix Σ. The parameter Tu corresponds to the time
interval separating two consecutive updates of the particle
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filter, and the other model parameters in (8) are defined as

a = exp
(− βTu

)
,

b = v
√

1− a2,
(9)

with v the steady-state velocity parameter and β the rate con-
stant.

3.2. Likelihood function1

Experimental results from previous research carried out on
particle filtering for ASLT have shown that steered beam-
forming (SBF) delivers an improved tracking performance
compared to TDE-based methods [2, 16]. Hence, the SBF
principle is here also used as a basis for the derivation
of the likelihood function. With Fm(ω) = F { fm(t)} the
Fourier transform of the signal data from the mth sensor,
and with ‖ · ‖ denoting the Euclidean norm, the output
P (�) of a delay-and-sum beamformer steered to the location
� = [x y]T is given as

P (�) =
∫

Ω

∣∣∣∣∣
M∑

m=1

Wm(ω)Fm(ω)e jω‖�−�m‖/c
∣∣∣∣∣

2

dω, (10)

where �m = [xm ym]T is the known position of the mth mi-
crophone, Wm(·) is a frequency weighting term, and Ω cor-
responds to the frequency range of interest, which is typically
defined as Ω = {ω | 2π · 300 Hz � ω � 2π · 3000 Hz}
for speech processing applications. In the following, the
term Wm(·) is computed according to the phase transform
(PHAT) weighting [17], for m ∈ {1, . . . ,M},

Wm(ω) = ∣∣Fm(ω)
∣∣−1

. (11)

For a given state X, the likelihood function p(Y | X) mea-
sures the probability of receiving the data Y. The SBF formula
given in (10) effectively measures the level of acoustic energy
that originates from a given focus location. The likelihood
function should hence be chosen to reflect the fact that peaks
in the SBF output P (·) correspond to likely source locations,
as well as the fact that, occasionally, there may be no peak in
the SBF output corresponding to the true source due, for in-
stance, to the effects of disturbances such as reverberation.
The position of the peaks may also have slight errors due to
noise or inaccurate sensor calibration. Based on these con-
siderations, one approach to defining the likelihood function
is to first select the positions �̂θ , θ ∈ {1, . . . ,Θ}, of the Θ
largest local maxima in the current SBF output. The generic
observation variable Y is then typically defined as the set con-
taining the selected SBF peak locations:

Y �
{
�̂1, . . . , �̂Θ

}
, (12)

1 For clarity, the frame subindex k is omitted in this section, implicitly as-
suming that all variables of interest refer to the current frame of data k.

and the following Θ + 1 hypotheses can be considered:

Hθ : SBF peak at location �̂θ is due to true source,

H0 : no peak in the SBF output is due to true source,
(13)

with θ ∈ {1, . . . ,Θ}. The likelihood function is then given as
follows:

p(Y | X) =
Θ∑

i=0

qi · p
(

Y | X, Hi
)
, (14)

with qi = p(Hi | X), i ∈ {0, . . . ,Θ}, the prior probabilities
of the hypotheses. Without prior knowledge regarding the
occurrence of each hypothesis, these probabilities are usually
assumed equal and independent of the source location:

qθ = 1− q0

Θ
, θ ∈ {1, . . . ,Θ}. (15)

Assuming statistical independence between different peak lo-
cations in the SBF measurement, the conditional terms on
the right-hand side of (14) are given as follows:

p
(

Y | X, Hi
) =

Θ∏

θ=1

p
(
�̂θ | X, Hi

)
, i ∈ {0, . . . ,Θ}. (16)

In a diffuse sound field comprising many different fre-
quency components, such as the sound field resulting from
reverberation, the energy density can be assumed uniform
throughout the considered enclosure [18]. This means that
given hypothesis H0, maximising the SBF output will result
in a random location distributed uniformly across the state
space. Given Hθ , θ �= 0, the likelihood of a measurement
originating from the source is typically modeled as a Gaus-
sian PDF with variance σ2

Y, to account for measurement and
calibration errors. Thus, with N (ξ;μ,Σ) denoting a Gaussian
density with mean μ and covariance matrix Σ evaluated at ξ,
the likelihood for each SBF peak can be defined as follows:

p
(
�̂θ | X, Hi

) =
⎧⎨
⎩

N
(
�X; �̂θ , σ2

YI
)

if θ = i,

UD
(
�X
)

otherwise,
(17)

where �X = [x y]T corresponds to the top half of the state
vector X, I is the 2 × 2 identity matrix, and with UD (·) the
uniform PDF over the considered enclosure domain D =
{(x, y) | xmin � x � xmax, ymin � y � ymax}.

The derivations presented so far suffer from a major
drawback: the SBF output has to be computed across the en-
tire domain D in order to find Θ local maxima �̂θ , which
leads to a considerable computational load in practical im-
plementations. One approach that circumvents this draw-
back is based on the concept of a “pseudo-likelihood,” as in-
troduced previously in [2]. This concept relies on the idea
that the SBF output P (·) itself can be used as a measure
of likelihood. Adopting this approach implicitly reduces the
number of hypotheses to the following two events:

H0 : SBF measurement originates from clutter,

H1 : SBF measurement originates from true source,
(18)
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with respective prior probabilities q0 = p(H0 | X) and q1 =
p(H1 | X) = 1 − q0. Note also that the pseudo-likelihood
approach implicitly redefines the observation variable Y as
the SBF output function P (·) itself; Y hence does not corre-
spond to a set of SBF peaks as given in (12) anymore. On the
basis of (14), (16) and (17), the new likelihood function can
be derived as

p(Y | X) = q0 ·UD
(
�X
)

+ γ
(
1− q0

) · (P (�X
))r

, (19)

where the nonlinear exponent r is used to help shape the SBF
output to make it more amenable to source tracking [2].2

The parameter γ in (19) is a normalisation constant ensur-
ing that P (·) is suitable for a use as density function, and
computed in theory such that

γ ·
∫∫

D

(
P (�)

)r
d� = 1. (20)

However, the computation of γ according to (20) here again
involves the computation of P (·) across the entire domain
D , which is not desirable. In [2], this issue was solved by
defining q0 = 0 and γ = 1, arguing that the SBF measure-
ments are always positive and that the update step of the PF
algorithm would ensure that the particle weights are suit-
ably normalised. In the present work however, a proper nor-
malisation parameter γ in the pseudo-likelihood defined by
(19) is necessary, since q0 �= 0 will be assumed in the fol-
lowing developments. Consequently, we propose a normal-
isation coefficient based on a different principle. As derived
previously, a Gaussian likelihood model would typically first
determine the global maximum �̂ of P (·), and subsequently
define p(Y | X) as a Gaussian density centered on �̂ and with
a certain variance σ2

Y, see (17). For the pseudo-likelihood ap-
proach, we hence propose to normalise P (·) so that its max-
imum value is equal to the peak value of this Gaussian PDF:

γ ·max
�∈D

{(
P (�)

)r} = max
�∈D

{
N
(
�; �̂, σ2

YI
)} = (2πσ2

Y

)−1
.

(21)

The value of the parameter γ can be derived from (21) as fol-
lows. Due to the PHAT weighting in (11), and using the rep-
resentation Fm(ω) = |Fm(ω)| · e jφm(ω), the SBF output com-
puted according to (10) becomes

P (�) =
∫

Ω

∣∣∣∣∣
M∑

m=1

e jΦm(ω)

∣∣∣∣∣
2

dω, (22)

with Φm(ω) = φm(ω) + ω‖� − �m‖c−1. According to the
Cauchy-Schwarz inequality, the SBF output values are thus
bounded as follows:

P (�) �
∫

Ω

( M∑

m=1

∣∣e jΦm(ω)
∣∣
)2

dω

=M2(ωmax − ωmin
)
,

(23)

2 Using r > 1 typically increases the sharpness of the peaks while reducing
the background noise variance in the SBF measurements.

where ωmax and ωmin are the upper and lower limits of the
frequency range Ω, respectively. Using the result of (23), the
normalisation constant in (21) finally becomes

γ = 1

2πσ2
YM2r

(
ωmax − ωmin

)r . (24)

The normalisation process described here ensures that
the two PDFs in the mixture likelihood definition of (19) are
properly scaled with respect to each other.

3.3. PF algorithm outputs

For each frame k of input data, the particle filter delivers the
following two outputs. First, an estimate �̂X,k of the source
position is computed according to (5b):

�̂X,k =
N∑

n=1

w(n)
k �(n)

X,k, (25)

where �(n)
X,k = [x(n)

k y(n)
k ]T corresponds to the location in-

formation in the nth particle vector. The second output is
a measure of the confidence level in the PF estimates, which
can be obtained by computing the standard deviation of the
particle set:

σk =

√√√√√
N∑

n=1

w(n)
k

∥∥�(n)
X,k − �̂X,k

∥∥2
. (26)

The parameter σk provides a direct assessment of how reliable
the PF considers its current source position estimate to be.

4. VOICE ACTIVITY DETECTION

The voice activity detector (VAD) employed here relies on
an estimate of the instantaneous signal-to-noise ratio (SNR)
in the current block of data [12]. It assumes that the data
recorded at the microphones is a combination of the speech
signal and noise:

fm(t) � sm(t) + vm(t), m ∈ {1, . . . ,M}, (27)

where the signal sm(·) and noise vm(·) are uncorrelated. It
is further assumed that the microphone signals are band-
limited and sampled in time.

The scheme works on the basis of the expected noise
power spectral density, which is estimated during nonspeech
periods. The estimated noise level is then used during peri-
ods of speech activity to estimate the SNR from the observed
signal. The assumption is that the speaker is active when
the signal level is sufficiently higher than the noise level: the
speech versus nonspeech decision is made by comparing the
mean SNR to a threshold, where the SNR average is taken
over the considered frequency domain. The spectral resolu-
tion is defined to be lower than the frame length in order to
decrease the variance of the signal power estimates. The spe-
cific application considered in this work makes it possible to
reduce the variance further by averaging over multiple mi-
crophones. The frame length L is chosen such that the prop-
agation delay to the different microphones does not impact
significantly on the power estimate.



6 EURASIP Journal on Advances in Signal Processing

4.1. SNR estimation

The instantaneous, reduced-resolution estimate Pf ,d(k) of
the power spectral density for the dth frequency band and
the kth frame of data from the microphones is obtained ac-
cording to

Pf ,d(k) = 1
M

M∑

m=1

∫

Ωd

ϕ(ω)

∣∣∣∣∣
1
L

kL∑

l=kL−L+1

fm(l)e jlω
∣∣∣∣∣

2

dω,

(28)

where the window function ϕ(ω) is here chosen to de-
emphasise the lower frequency range, in order to suppress
frequencies with high noise content. The integration re-
gions Ωd, d ∈ {1, . . . ,D}, divide the frequency space into
a small number (typically eight) of nonoverlapping bands of
equal width. The background noise power Pv,d is assumed
to vary slowly in relation to the speech power. In practice, a
time-varying estimate P̂v,d(k) of Pv,d is obtained by averag-
ing Pf ,d(·) over time during the nonspeech periods detected
by the algorithm. An initial estimate of Pv,d is typically ob-
tained during a short algorithm initialisation phase, carried
out during a period of background noise only.

The instantaneous SNR for frequency band d is calcu-
lated according to

ψd(k) = Pf ,d(k)

Pv,d
− 1. (29)

During nonspeech periods, we have Pf ,d(k) ≈ Pv,d, and the
variance of the instantaneous SNR becomes

σ2
v,d = E

{(
ψd(k)− E{ψd(k)

})2
}
= E{ψ2

d(k)
}

, (30)

where E{·} represents the statistical expectation. Thus, an es-
timate σ̂2

v,d(k) of the background noise variance can be found
by averaging the square of the instantaneous SNR during
nonspeech periods.

4.2. Statistical detection

The speaker is assumed to be active during the kth frame
when the instantaneous SNR ψd(k) is higher than a threshold
ηd. The threshold can be derived by considering the problem
as a hypothesis test:

H0 : ψd(k) = Pv,d(k)
Pv,d

− 1,

H1 : ψd(k) = Pv,d(k) + Ps,d(k)
Pv,d

− 1 = Pf ,d(k)

Pv,d
− 1,

(31)

where Ps,d(k) and Pv,d(k) are the instantaneous speech signal
and noise power, respectively, the null hypothesis H0 denotes
nonspeech, and H1 the alternative.

The PDF for the instantaneous SNR estimates during
nonspeech can be defined as

p
(
ψd(k) |H0

) = 1√
2πσ2

v,d

exp

(−ψ2
d(k)

2σ2
v,d

)
, (32)

assuming that the estimates are Gaussian distributed. This
assumption is not always correct, but works well as an
approximation under real conditions [12]. From (32), the
probability of false alarm PFA, that is, speech reported dur-
ing nonspeech period, can then be formulated as

PFA = Pr
{
ηd < ψd(k) |H0

}
(33a)

=
∫∞
ηd

1√
2πσ2

v,d

exp

(−ψ2
d(k)

2σ2
v,d

)
dψd(k). (33b)

By rearranging (33b) and solving for ηd we obtain

ηd =
√

2σ2
v,d · erfc−1 (2PFA

)
, (34)

where erfc(·) is the complementary error function [19]. In
a practical implementation, a time-varying estimate η̂d(k) of
the threshold is obtained by using the estimated background
noise variance σ̂2

v,d(k). Finally, the binary VAD decision ρ(k)
for speech is made by comparing the mean instantaneous
SNR to the mean threshold, where the average is taken over
all frequency bands:

ρ(k) =

⎧⎪⎪⎨
⎪⎪⎩

1 if
D∑

d=1

ψd(k) >
D∑

d=1

ηd(k),

0 otherwise,

(35)

where 1 denotes speech and 0 nonspeech.
Note that the operation of the algorithm depends on the

state of its own output for determining when to start esti-
mating the background noise power. During the SNR esti-
mation process, a hangover scheme based on a state machine
is therefore used in order to reduce the probability of speech
entering the background noise estimate [12]. However, if the
background noise power changes rapidly, the algorithm may
enter a state where it will provide erroneous decisions, which
is a limitation inherent to the considered VAD method. Ex-
perimental tests have however shown that this happens very
rarely in practice, and that the algorithm is able to recover by
itself in such cases after a short transitional period.

5. FUSION OF VAD MEASUREMENTS

A straightforward approach to merging different measure-
ment modalities within the PF framework is via the defini-
tion of a combined likelihood function. This representation
however would fuse both the VAD and SBF measurements
at the same algorithmic level, implicitly assuming statistical
independence between these two types of observation. In the
context of the specific ASLT problem considered in this work,
this is not completely justified: intuitively, if the VAD classi-
fies the current frame of data as nonspeech, the correspond-
ing SBF measurement is likely to be unreliable in terms of
source localisation accuracy. We hence adopt a different ap-
proach to the fusion problem, as described in the following.

The output of the VAD can be linked to the probability of
the hypotheses in (18) in an obvious manner. For instance,
considered as an indication of the likelihood that the current
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SBF observation originates from clutter only, the variable q0

explicitly measures the probability of the acoustic source be-
ing inactive. Likewise, q1 = 1 − q0 corresponds to the likeli-
hood of the source being active, an estimate of which is deliv-
ered by the VAD. Therefore, instead of setting the variable q0

to a constant value in the design of the algorithm as done in
[2, 3], we propose to use a time-varying q0 parameter based
on the output of the VAD as follows:

q0(k) = 1− α(k), (36)

where α(k) ∈ [0, 1] is derived from the state of the VAD al-
gorithm. The generic algorithm resulting from (36) and from
the developments in Section 3 will be denoted PF-VAD from
here on.

Three different methods for deriving the parameter α(k)
form the VAD algorithm are suggested. These are defined as
follows:

αSNR(k) = 2
π

arctan
(
ψ(k)

)
,

αSP(k) = Pv(k) · ψ(k)
max
i<k

(
αSP(i)

) ,

αBIN(k) = ρ(k),

(37)

with the following definitions:

ψ(k) =
√√√√√ 1
D

D∑

d=1

ψd(k),

Pv(k) =
√√√√√ 1
D

D∑

d=1

P̂v,d(k).

(38)

The first method, that is, the VAD output αSNR(·), maps the
mean instantaneous SNR gain level (a number between 0 and
∞) to α(·) through bilinear transformation. The reasoning
behind this approach is that a high SNR should indicate that
the signal received at the microphones contains information
useful to the tracking algorithm. The second method, αSP(·),
calculates an estimate of the speech signal level. The normal-
isation with respect to all previous maximum signal levels is
carried out in order to remove the influence of the absolute
signal level at the microphones. This approach effectively dis-
cards the noise level information and assumes that only the
speech signal level information is useful to the tracking al-
gorithm. The last method, αBIN(·), simply uses the binary
output ρ(·) from the VAD as α(·). The “all-or-nothing” ap-
proach used by this method potentially discards a substantial
amount of useful information. It however still represents an
alternative of potential interest, and is included here for the
purpose of providing a performance comparison baseline.

Figure 1 shows an example of the different VAD outputs
defined above. The curves obtained with these VAD meth-
ods will typically differ from each other as a function of the
specific noise and reverberation level contained in the input
signals. Compared to the binary output αBIN(·), the use of
soft VAD information with αSNR(·) and αSP(·) allows the PF
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Figure 1: Practical example of three considered VAD methods. (a)
Input signal data. (b) Resulting VAD outputs.

to track the source in a more subtle manner. For instance, a
VAD output value 0 < α(·) < 1 effectively indicates that the
input signals may be partly corrupted by disturbance sources,
and that the current SBF observation might not be fully accu-
rate. The PF can then take account of this fact and use more
caution when updating the particle set, and hence, when de-
termining the source location estimate. With the binary VAD
output αBIN(·), the source tracking process is basically turned
fully on or off based on ρ(·) (hard decisions), which may not
be advantageous when a high level of noise and/or reverber-
ation is present. In the next section, results from experimen-
tal simulations of the PF-VAD method will determine which
one of these three approaches delivers the best tracking per-
formance.

6. EXPERIMENTAL RESULTS

This section presents some examples of the tracking results
obtained with the proposed PF-VAD algorithm. The various
parameters of the PF-VAD implementation were optimised
empirically and set to the following values: the number of
particles was set to N = 50, the effective sample size thresh-
old Nthr = 37.5, the standard deviation of the observation
density was defined as σY = 0.15 m, and the nonlinear expo-
nent was set to r = 2. Following standard definitions (see,
e.g., [2, 3]), the PF-VAD implementation made use of the
propagation model parameters v = 0.8 m/s and β = 10 Hz.
The VAD parameters were defined as PFA = 0.03 and D = 8.
The audio signals were sampled with a frequency of 16 kHz
and processed in nonoverlapping frames of L = 256 samples
each.
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For comparison purposes, the performance assessment
given in this section also includes results from the SBF-PL
algorithm, a sound source tracking scheme previously pro-
posed in [2]. The SBF-PL method relies on a particle filtering
approach similar to that presented in this work, but does not
include any VAD measurements. The reader is referred to [2]
for a more detailed description of the SBF-PL implementa-
tion, and to [16] for a summary of its practical performance
results and a comparison with other tracking methods.

6.1. Assessment parameters

The experimental results make use of the following parame-
ters to assess the tracking accuracy of the considered meth-
ods. The PF estimation error for the current frame is

εk =
∥∥�S,k − �̂X,k

∥∥, (39)

where �S,k is the ground-truth source position at time k. In
order to assess the overall performance of the developed al-
gorithm over a given sample of audio data, the average error
is simply computed as

ε = 1
K

K∑

k=1

εk , (40)

with K representing the total number of frames in the con-
sidered audio sample. The standard deviation parameter σk,
see (26), is also used here as an overall indication of the PF
tracking performance in the following results presentation.

6.2. Image method simulations

The proposed PF algorithm was put to the test using syn-
thetic reverberant audio data generated using the image
source method [20]. The results presented in this section
were obtained using audio data generated with the source
trajectory, source signal, and microphone setup depicted in
Figure 2. The dimension of the enclosure was set to 3 m ×
3 m × 2.5 m, and the height of the microphones, as well as
that of the source, was defined as 1.5 m.

Figure 3 presents some typical results obtained with the
two considered ASLT methods (where PF-VAD uses the
speech-based VAD output αSP), using the setup of Figure 2
with a reverberation time T60 ≈ 0.1 s and input SNR of ap-
proximately 15 dB. This figure clearly illustrates the most sig-
nificant outcome of the PF-VAD implementation. Fusing the
VAD measurements within the PF framework effectively al-
lows the tracking algorithm to put more emphasis on the
considered dynamics model in (8) when spreading the par-
ticles during nonspeech periods, while at the same time re-
ducing the importance of the SBF observations due to the
fact that no useful information can be derived from them
when the speaker is inactive. This consequently allows the
PF to keep track of the silent target, and to resume track-
ing successfully when the speaker becomes active again. This
can be distinctly noticed with the consistent increase of the
σk values for PF-VAD (Figure 3(b)) during significant gaps
in the speech signal. This specific effect originates from the
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Figure 2: Setup for image method simulations. (a) Source signal.
(b) Microphone positions (◦) and parabolic source trajectory.

influence of the VAD measurements on the effective sample
size parameter Neff. Figure 4(b) shows an example of the Neff

values computed during one run of PF-VAD versus time. As
described in step 3 of Algorithm 1, the parameter Neff is reset
to N after the resampling stage is carried out, and the re-
sult in Figure 4 thus provides an overall view of the resam-
pling frequency. This plot demonstrates how the VAD out-
put “freezes” the Neff value during nonspeech periods, effec-
tively decreasing the occurrence of the particle resampling
step, which in turn leads to a spatial evolution of the particles
according to the dynamics model only.

As an important consequence of this fact, the standard
deviation σk delivered by PF-VAD effectively reflects a “true”
confidence level, that is, in keeping with the estimation accu-
racy, and can be hence directly used as an indication of the
reliability of the PF estimates. For instance, an obvious add-
on to the PF-VAD method would be to simply discard the PF
location estimates whenever σk is above a predefined thresh-
old.

On the other hand, the more or less constant resampling
frequency implemented as part of the SBF-PL method pre-
cludes this desired behaviour, meaning that the particles al-
ways remain very concentrated spatially. This essentially im-
plies that during nonspeech periods, the SBF-PL particle fil-
ter continues its tracking as if the speaker was still active, and
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Figure 3: Tracking result examples for two ASLT methods, for
T60 ≈ 0.1 s and SNR ≈ 15 dB. (a) Example of microphone signal.
(b) and (c) Estimation error and standard deviation for PF-VAD
and SBF-PL (results averaged over 100 simulation runs).

is hence much more likely to be driven off-track by the ef-
fects of reverberation and additive noise. An example of such
a scenario is shown in Figure 3(c), where SBF-PL loses track
of the speaker at the end of the simulation due to a significant
gap in the speech signal.

Figures 5 and 6 present the average tracking results ob-
tained for the proposed PF-VAD algorithm, as well as a
comparison with the previously developed SBF-PL method.
These plots show the average error ε computed over a range
of input SNR values (Figure 5) and reverberation times
(Figure 6). Different T60 values were achieved by appro-
priately setting the walls’ reflection coefficients in the im-
age method implementation. Statistical averaging was per-
formed due to the random nature of the PF implementation,
and the results depicted in these figures represent the average
over 100 simulation runs of the considered algorithms, using
the above-mentioned image method setup.
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Figure 4: Overview of the resampling frequency during one run of
PF-VAD. (a) Example of input signal used for this simulation, and
(b) effective sample size parameter Neff versus time (dashed line:
threshold Nthr).

These results clearly demonstrate the superiority of the
proposed PF-VAD algorithm. The SBF-PL method consis-
tently exhibits a larger average error due to track losses oc-
curring as a result of significant gaps in the considered speech
signal (see the source signal plotted in Figure 2(a)), which the
PF-VAD implementation manages to avoid. Also, it must be
kept in mind that the PF-VAD results shown in Figures 5
and 6 correspond to the mean error ε computed over the en-
tire length of the considered audio sample. This typically also
includes periods where the PF has a low confidence level in
its estimates. As mentioned earlier, the average performance
of PF-VAD would improve even further if tracking estimates
were discarded when σk is above a predefined threshold.

In regards to a comparison of the three tested VAD
schemes with each other, it can be seen from Figures 5 and
6 that the speech-based VAD scheme αSP generally tends to
yield the best overall tracking performance, given the specific
test setup considered in this section. This result suggests that
the most useful information from a tracking point of view
relies more on the amount of speech present during a given
time frame, rather than the speech-to-noise ratio, which, for
instance, may become large despite a small speech signal level
in some circumstances.

6.3. Real-time implementation and real audio tracking

While the image method simulations presented in the pre-
vious section are useful to gauge the proposed algorithm’s
ability to deal with the considered ASLT problem, only a real-
time implementation, used in conjunction with real audio
signals, is able to provide a full insight into how suitable the
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Figure 5: Average tracking error versus input signal SNR, for T60 ≈
0.1 s (results averaged over 100 simulation runs).
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Figure 6: Average tracking error versus reverberation time T60, with
input SNR of about 20 dB (results averaged over 100 simulation
runs).

algorithm is for practical applications. Such an implementa-
tion has also been carried out in the frame of this research.
However, for the sake of conciseness, details of this imple-
mentation and of the real audio tracking results are presented
elsewhere, and only a brief review of these results is presented
here.

The PF-VAD algorithm was implemented on a standard
1.8 GHz IBM-PC running under Linux, used in conjunction
with an array of eight microphones sampled at 16 kHz. An
analysis of the algorithm showed that an implementation

with 100 particles results in a computational complexity of
71.5 M floating-point operations per second (FLOPS), re-
sulting in a CPU load during execution of about 5%. These
results hence demonstrate the suitability of the PF-VAD
method for real-time processing on low-power embedded
systems using all-purpose hardware and software. Full details
of this real-time implementation can be found in [21].

A full tracking performance assessment of the PF-VAD
algorithm was also conducted using samples of real audio
data, recorded in a reverberant environment. A microphone
array, similar to that shown in Figure 2, was set up in a room
with dimensions 3.5 m × 3.1 m × 2.2 m and a practical re-
verberation time of T60 ≈ 0.3 s (frequency-averaged up to
24 kHz). The experimental results using this practical setup
are reported in [22], and confirm the improved efficiency of
PF-VAD compared to SBF-PL when used in real-world cir-
cumstances.

7. CONCLUSION AND FUTURE WORK

This work is concerned with the problem of tracking a
human speaker in reverberant and noisy environments by
means of an array of acoustic sensors. We derived a PF-based
method that integrates VAD measurements at a low level in
the statistical algorithm framework. Provided the dynamics
of the considered acoustic source are properly modeled, the
proposed PF-VAD method greatly reduces the likelihood of
a complete track loss during long silence gaps in the speech
signal. The proposed algorithm hence provides an improved
tracking performance for real-world implementations com-
pared to previously derived PF methods. As a further result
of the proposed implementation, the standard deviation of
the particle set can now be used as a reliable indication of
the filter’s own estimation accuracy. The obvious limitation
inherent to the current developments is that only one sin-
gle speaker can be tracked at a time. This work will however
serve as a basis for further research on the problem of multi-
ple speaker tracking using the principle of microphone array
beamforming.
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