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A method is proposed that provides an approximation of the acoustic energy decay �energy–time
curve� in room impulse responses generated using the image-source technique. A geometrical
analysis of the image-source principle leads to a closed-form expression describing the energy decay
curve, with the resulting formula being valid for a uniform as well as nonuniform definition of the
enclosure’s six absorption coefficients. The accuracy of the proposed approximation is demonstrated
on the basis of impulse-response simulations involving various room sizes and reverberation levels,
with uniform and nonuniform sound absorption coefficients. An application example for the
proposed method is illustrated by considering the task of predicting an enclosure’s reflection
coefficients in order to achieve a specific reverberation level. The technique presented in this work
enables designers to undertake a preliminary analysis of a simulated reverberant environment
without the need for time-consuming image-method simulations.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2936367�
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I. INTRODUCTION

The image-source model �ISM� has become an ubiqui-
tous tool in many fields of acoustical and engineering re-
search over the past few decades. Its success relies mainly on
its conceptual simplicity, which makes ISM-based algo-
rithms relatively straightforward to implement. As a result,
the ISM approach has been used as a basis principle for a
wide range of purposes including, for instance, prediction of
sound propagation in enclosed environments1,2 and long
tunnels,3 architectural modeling and design,4,5 noise control
in large spaces,6 and analysis of perceptual properties such as
speech intelligibility and speech transmission index in vari-
ous enclosures.7 In recent times, the image-source model
has also been implemented for the purpose of binaural
auralization,8 spatialized sound rendering in virtual en-
vironments9 and interactive systems,10 and augmented-reality
applications such as video games.11

Another important domain of application of the image-
source technique is in order to assess the performance of
various signal processing algorithms operating in reverberant
environments. Some application examples include algo-
rithms for blind source separation,12 channel identification
and equalization,13,14 acoustic source localization and
tracking,15 speech recognition,16 and speech enhancement.17

In this context, the image model is generally used to deter-
mine the algorithm’s robustness against increasing levels of
environmental reverberation. Although not usually addressed
in literature, a significant issue during this process is related
to predicting the reverberation time in the resulting room
impulse responses generated with the ISM. Well established
formulas, such as Sabine or Eyring’s reverberation time, do
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not provide accurate results when used to determine the en-
closure’s sound absorption in order to achieve a desired re-
verberation level.18,19 This discrepancy between predicted
and actual reverberation time, which is highlighted in this
paper, is especially pronounced with a nonuniform definition
of the sound reflection coefficients in the considered ISM
room setup. As a result, a risk exists that the algorithm under
test may be ultimately simulated with a reverberation level
different from what is assumed during the experiment, lead-
ing to a potentially significant bias in the performance re-
sults. Finding an efficient solution to this specific issue was
the original motivation behind the research presented in this
work.

This paper describes a method for predicting the energy
decay in a room impulse response �RIR� simulated with the
ISM. The proposed approximation method is based on a geo-
metrical consideration of the ISM principle: the acoustic
power in the transfer function at a specific time lag can be
seen as the addition of the contributions from the image
sources located on a sphere centered around the receiver.
This approach leads to a closed-form expression which then
allows a numerical prediction of the energy decay curve
�EDC�; this alleviates the need to practically simulate the
RIR of interest, which represents a computational advantage,
for instance, during the process of adjusting the RIR’s rever-
beration time. Furthermore, this method efficiently deals
with situations where current reverberation-time prediction
techniques experience significant inaccuracies, such as in the
case of nonuniform absorption coefficients. The ability to
accurately predict the acoustic energy decay in a given en-
closure hence provides a computationally efficient solution
to the above mentioned problem of predicting the RIR’s re-
verberation level, and also represents a general development
tool providing some preliminary insight into the acoustical

characteristics of the simulated environment.
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In the following, the basic principles underlying the
image-source method are first briefly reviewed in Sec. II,
which also presents a modification of the original ISM algo-
rithm leading to more practically accurate impulse responses.
This modified ISM technique is used as a basis for the pro-
posed EDC approximation method, the details of which are
then presented in Sec. III. The accuracy and practical rel-
evance of this approximation method are then demonstrated
using a series of numerical evaluations in Sec. IV, which
considers a typical application example and provides a com-
putational efficiency assessment. Finally, Sec. V concludes
with a discussion of the main concepts presented in this
work.

II. IMAGE-SOURCE METHOD

This section briefly reviews the basic principles of the
image-source technique and establishes the notation used
throughout the rest of the paper.

A. Original approach

The conventional image-source method, as presented
originally in a landmark paper by Allen and Berkley,20 is a
well established algorithm for generating simulated RIRs in
a given room. Assume that a Cartesian coordinate system
with coordinates �x ,y ,z� is defined in the considered enclo-
sure, with its origin corresponding to one of the room cor-
ners. Let ps and pr denote the position vectors of a source
and a receiver, respectively, in this setting:

ps = �xs,ys,zs�T, �1�

pr = �xr,yr,zr�T, �2�

where �·�T denotes the matrix transpose operator. Similarly,
let

r = �Lx,Ly,Lz�T �3�

represent the vector of room dimensions, with length Lx,
width Ly, and height Lz. It is assumed that the acoustical
property of each surface in the enclosure is characterized by
means of a sound reflection coefficient �, related to the ab-
sorption coefficient � according to

� = 1 − �2. �4�

The reflection coefficients for each surface are denoted as
�x,i, �y,i, and �z,i, with i=1,2, where the subindex 1 refers to
the wall closest to the origin. As commonly assumed, this
work is based on geometrical room-acoustics principles and
assumes that the reflection coefficients are frequency inde-
pendent as well as angle independent.21

The room impulse response from the source to the re-
ceiver can be determined by considering image sources on an
infinite grid of mirror rooms expanding in all three dimen-
sions. The contribution of each image source to the receiver
signal is a replica of the source signal delayed by a lag � and
attenuated by an amplitude factor A. The RIR h�·� hence

20
follows as
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h�t� = �
u=0

1

�
l=−�

�

A�u,l� · ��t − ��u,l�� , �5�

where t denotes time, ��·� is the Dirac impulse function, and
the triplets u= �u ,v ,w� and l= �l ,m ,n� are parameters con-
trolling the indexing of the image sources in all dimensions.
For conciseness, the sum over u or l in Eq. �5� is used to
represent a triple sum over each of the triplet’s internal indi-
ces. The attenuation factor A�·� and time delay ��·� in Eq. �5�
are defined as follows:

A�u,l� =
�x,1

�l−u��x,2
�l� �y,1

�m−v��y,2
�m��z,1

�n−w��z,2
�n�

4� · d�u,l�
, �6�

��u,l� = d�u,l�/c , �7�

where c is the sound propagation velocity and d�·� represents
the distance from the image source to the receiver,

d�u,l� = �diag�2u − 1,2v − 1,2w − 1� · ps + pr

− diag�2l,2m,2n� · r� , �8�

with �·� as the Euclidean norm and diag�·� denoting a diago-
nal matrix with the arguments as diagonal elements.

Finally, note that the number of image sources to include
in the summation of Eq. �5� grows exponentially with the
considered order of reflections. The simulation of a full-
length RIR using an image-source approach can thus lead to
a considerable computational load in practice.

B. Modified ISM technique

The basic image-source simulation method can be im-
proved in a number of different ways. This section presents
two such modifications, which lead to more efficient simula-
tions and better practical results. The resulting algorithm will
be used as a basis for the simulations presented at the end of
this paper.

1. Frequency-domain computations

The ISM implementation presented in Sec. II A typically
needs to be updated in practice when dealing with discrete-
time signals since the time delay ��·� does not usually corre-
spond to an integer multiple of the sampling period. In the
approach of Allen and Berkley,20 this problem is dealt with
by using nearest-integer rounding of each image source’s
propagation time, resulting in a shift of the corresponding
impulse in the RIR. This approach thus leads to a coarse
histogramlike representation of the desired RIR, which sub-
sequently requires high-pass filtering in order to remove the
nonphysical defect of this model resulting at zero frequency.

A more accurate solution to this problem is to carry out
the ISM computations in the frequency domain, which al-
lows the representation of delays that are not necessarily in-
teger multiples of the sampling period. In the frequency do-
main, a time shift � is represented as exp�−j	��, with j
=�−1 and 	 denoting the frequency variable. The frequency-

domain RIR H�·� hence results from Eq. �5� as
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H�	� = �
u=0

1

�
l=−�

�

A�u,l�e−j	��u,l�, �9�

where A�·� and ��·� are computed according to Eqs. �6� and
�7�, respectively. The time-domain RIR follows as the in-
verse Fourier transform of H�·�, i.e.,

h�t� = F−1	H�	�
 . �10�

Note that for time-sampled, and hence band-limited signals,
the contribution of each image source in the time domain
then results as a �truncated� sinc-like fractional-delay filter
that accounts for noninteger propagation times. This ap-
proach, which was previously used by various authors,13,18

essentially represents the frequency-domain equivalent to the
low-pass impulse method �with infinite window duration�
proposed by Peterson.22

2. Negative reflection coefficients

Given a specific absorption coefficient � characterizing
any room surface, the corresponding reflection coefficient �
follows from Eq. �4� as

� = 
 �1 − � . �11�

The original ISM implementation makes use of the positive
definition of the � parameter. However, when used in con-
junction with a frequency-domain implementation �or
equivalently, Peterson’s method�, this approach generates
anomalous RIRs showing a distinctively nonphysical tail de-
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FIG. 1. �a� Typical RIR obtained using frequency-domain ISM �equivalent
to Peterson’s method� with positive reflection coefficients, r
= �3.2 m,4 m,2.7 m�T, pr= �1.1 m,1 m,1.2 m�T, ps= �2 m,3 m,2 m�T,
sampling frequency Fs=16 kHz, and uniform reflection coefficients �
=0.92. �b� Typical RIR obtained with the same environmental setup but
using negative reflection coefficients. �c� Typical measurement of a real RIR
recorded in a room with reverberation time T60�0.6 s.
cay, as depicted in Fig. 1�a�.
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An alternative approach is to use the negative definition
of the parameter � in Eq. �11�. This can be explained by
considering the angle-dependent formula23 for the reflection
coefficient of a boundary with impedance �,

� =
� cos��� − 1

� cos��� + 1
, �12�

which can become negative for a certain range of incidence
angle �.24 As shown in Fig. 1�b�, and contrary to Fig. 1�a�,
this alternative approach results in RIRs whose shape com-
pares well to that of practical RIR measurements, an example
of which is displayed in Fig. 1�c�. Thus, because this model
can be seen as being more accurate in replicating the effects
of a real acoustic environment, the ISM algorithm used in the
remainder of this work will be based on Eqs. �9� and �10�
with the following definition of each image source’s ampli-
tude factor:

A�u,l� =
1

4�d�u,l�
�− �x,1��l−u��− �x,2��l��− �y,1��m−v�


�− �y,2��m��− �z,1��n−w��− �z,2��n�, �13�

where d�·� is computed according to Eq. �8�, and with the �
parameters corresponding to the usual definition of sound
reflection coefficients.25 Finally, it must be noted that this
“negative-coefficient approach” was previously studied and
used by António et al.18

C. Energy decay

Given a RIR h�t� computed for a specific environment
according to Eq. �10�, the energy decay envelope E�t�,
known in literature as energy–time curve or energy decay
curve �EDC�, can be computed using a normalized version of
the Schroeder integration method,7,26

E�t� = 10 log10��t
�h2���d�

�0
�h2���d�


 , �14�

where E�·� is expressed in dB. The result from Eq. �14� can
then be used as a basis for deriving an estimate of the rever-
beration time, such as T20 or T60.

III. PROPOSED ENERGY DECAY APPROXIMATION

This section presents the developments leading to the
proposed method for EDC approximation. For clarity, the
derivations are first carried out in a two-dimensional �2D�
�x ,y�-plane, and the results are then extended to the three-
dimensional �3D� case.

A. Two-dimensional case

With the ISM technique, each image source can be seen
as releasing a single sound “particle” �impulse� traveling in
the direction of the receiver at the speed of sound. Each
particle carries a unit amount of acoustic power, which de-
creases upon each reflection on a boundary surface according

to its absorption coefficient, and as a function of the distance
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traveled to the receiver. At the receiver, these sound particles
are then added together at the corresponding time lags to
create the impulse response.

Based on this principle, the value of the impulse re-
sponse h�t� for a given time t corresponds to the addition of
the sound amplitude contributions from all the image sources
located on, or very close to a circle of radius � around the
receiver, with ����t�=ct. This principle is demonstrated in
Fig. 2 for one quadrant of the �x ,y�-plane. Dashed rectangles
represent images of the considered room, and circles denote
the image sources of interest for the given radius �. The
original source has been placed at the center of the room for
illustration purposes. The analysis presented in this section is
based on the assumption of a large radius, that is,

� � max	Lx,Ly,Lz
 . �15�

For simplicity of the following derivations, it is also assumed
that the receiver is located at the center of the coordinate
system, as depicted in Fig. 2. This assumption, together with
the fact that some image sources do not lie perfectly on the
considered circle, typically leads to approximation errors that
become negligible as the radius � of the considered circle
increases.

Let us now consider an image source located at an angle
� along the considered circle, see Fig. 2. Prior to reaching
the receiver, its sound impulse traverses a number
Wx�Wx�� ,�� of walls in the x direction, and Wy�Wy�� ,��
walls in the y direction, which can be determined in a
straightforward manner on the basis of the known position of
the image source. Consequently, the power contribution P�·�
made by this source to the transfer function can be expressed

βx,1
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βx,2

βx,2

βy,1

βy,1

βy,2

βy,2

βy,2

x

y

�

ϑ

Lx

Ly

FIG. 2. Two-dimensional representation of the ISM principle. Dashed lines
represent the grid of images of the original room, which is displayed as a
shaded rectangle. The � parameters indicate the reflection coefficients of the
corresponding boundaries, and circles ��� represent the considered image
sources.
as
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P��,�� =
��x,1

2 �Wx/2��x,2
2 �Wx/2��y,1

2 �Wy/2��y,2
2 �Wy/2

�4���2 . �16�

Note that in contrast to Eq. �13�, this expression effectively
corresponds to a squared amplitude coefficient since the cur-
rent developments are based on acoustic power rather than
amplitude.5 Equation �16� makes use of the assumption that
along the path to the receiver, the number of walls with co-
efficient �x,1 ��y,1� is approximately equal to the number of
walls with coefficient �x,2 ��y,2�, that is, approximately equal
to half the number of walls Wx /2 �Wy /2�. Once again, this
condition essentially becomes valid as the radius � becomes
large. In order to ultimately achieve a closed-form expres-
sion of the desired EDC approximation, the number of
boundaries between the source and the receiver, in both di-
mensions, is determined according to a first-order approxi-
mation based on Fig. 2 �for �� �0,� /2��,

Wx =
�

Lx
�1 −

2�

�
� , �17�

Wy =
�

Ly

2�

�
. �18�

Using the approach described so far, it follows that the
value of the power impulse response hP�t� at time t, where
the subscript in hP�·� emphasizes the fact that the RIR is here
power-based, can be determined as

hP�t� = �
i�Ic

P��,�i� , �19�

with �=ct, the variable �i denoting the angle of the ith im-
age source, and Ic representing the index set of the sources
located on the considered circle. The basis of the proposed
approximation is then to consider Eq. �19� as a Riemann
sum, which can be represented as the integral of a continuous
function over the angle �,

hP�t� · �� = �
i�Ic

P��,�i� · �� �20�

��
0

2�

P��,��d� . �21�

As a result of the symmetry in the problem definition, the
analysis can be restricted to a quarter of the circle, i.e., for

�� �0,� /2�. An estimate ĥP�·� of the power transfer func-
tion then follows from Eq. �21� as

hP�t� � ĥP�t� =
4

��
�

0

�/2

P��,��d� . �22�

The angular variable �� can be determined as

�� =
2�

Ns
, �23�

where Ns corresponds to the total number of image sources
considered on the circle, or located very close to it. From
Fig. 2, it can be seen that for �→0, the average distance

between the image sources on the circle approaches Ly; simi-
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larly, it approaches Lx for �→� /2. Consequently, the pa-
rameter Ns is defined here as the circle’s circumference di-
vided by the average room dimension, i.e.,

Ns =
2��

r̄
, �24�

with r̄= �Lx+Ly� /2. The value of �� then follows as ��
= r̄ /�, which, together with Eq. �22�, leads to the following
approximation of the power RIR for the 2D setting:

ĥP�t� =
4�

r̄
�

0

�/2

P��,��d� . �25�

B. Extension to three dimensions

An extension to the 3D case is obtained via a generali-
zation of the above developments and the introduction of the
polar angle �� �0,��, as depicted in Fig. 3. Limiting here
again the analysis to one eighth of the sphere, this results in
Eq. �25� then becoming

ĥP�t� =
8�

r̄
�

0

�/2 �
0

�/2

P��,�,��d�d� , �26�

where r̄ now includes the third room dimension,

r̄ =
Lx + Ly + Lz

3
, �27�

and with the 3D extension of the power coefficient and num-
ber of walls,

P��,�,�� =
��x,1�x,2�Wx��y,1�y,2�Wy��z,1�z,2�Wz

�4���2 , �28�
By = ��y,1�y,2� , �34�
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Wx =
�

Lx
�1 −

2�

�
�2�

�
, �29�

Wy =
�

Ly

2�

�

2�

�
, �30�

Wz =
�

Lz
�1 −

2�

�
� . �31�

Inserting Eqs. �28�–�31� into Eq. �26� and analytically solv-
ing the double integral finally leads to the following estimate

ĥ �·��h �·� of the power transfer function:

x

y

z

�

ϑ

ϕ

FIG. 3. Definition of the spherical coordinate system.
P P
ĥP�t� =
1

8�r̄�
Bz

log�By

Bx
��Ei�log�Bz

Bx
�
 + log�log�Bz

Bx
�
 − Ei�log�Bz

By
�
 − log�log�Bz

By
�
� if Bx � By � Bz

Bz

log�Bz

B
��Ei�log�Bz

B
�
 + log�log�Bz

B
�
 + �� if Bz = By � Bx � B or Bz = Bx � By � B

B − Bz

log� B

Bz
� if Bz � Bx = By � B

B, if Bx = By = Bz � B .

� �32�
with �=0.577 215 7¯ the Euler–Mascheroni constant, Ei�·�
denoting the first-order exponential integral,27 ����t�=ct as
defined earlier, and with the following definitions:

Bx = ��x,1�x,2��/Lx, �33�

�/Ly
Bz = ��z,1�z,2��/Lz. �35�

In Eq. �32�, rotation of the coordinates x, y and z can be
applied in order to avoid cases that would otherwise lead
to negative arguments for the logarithm function or the ex-
ponential integral.
. M. Johansson: Energy decay in simulated room responses 273



C. Approximation of energy decay

On the basis of Eq. �14�, an estimate of the energy decay
curve can be computed as

Ê�t� = 10 log10��t
�ĥP���d�

�0
�ĥP���d�


 . �36�

In practice, the integrals in Eq. �36� can be replaced with
Riemann sums as follows:

�
t

�

ĥP���d� � T · �
i=0

�

ĥP�t + iT� , �37�

with an appropriate discretization step T. The validity of this

approximation depends on the function ĥP�·� being smooth
and bounded in the considered interval, which is supported
by the plots in Fig. 4; it is also shown in the next section that
Eq. �37� indeed holds true for the type of function defined in
Eq. �32�. Thus, the estimated energy–time curve can be fi-
nally computed according to Eqs. �36� and �37�, and for t
� t0, as

Ê�t� � 10 log10� �i=0
� ĥP�t + iT�

�i=0
� ĥP�t0 + iT�


, t � t0. �38�

The introduction of the parameter t0 in Eq. �38� can be ex-
plained as follows. According to the assumptions made in
this work, the EDC approximation is expected to be inaccu-
rate for small � values, that is, for t→0. Therefore, the ap-
proximation formula in Eq. �38� can be considered as rel-
evant only for values of t greater than a specific threshold,
denoted here as t0. Section IV will provide more detail re-
garding an appropriate setting of the t0 parameter for numeri-
cal simulation purposes.

D. Discussion

Two distinct sources of error can be identified in relation
to the expression proposed in Eq. �38�. As mentioned above,
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ĥ
P
(t

)

FIG. 4. Numerical evaluation of the approximate power transfer function

ĥP�·�, for various levels of reverberation, i.e., various values of � coeffi-
cients, and simulated with r= �4 m,5 m,2.9 m�T.
the assumption of a large radius � will typically lead to a
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poor approximation of the true EDC as t→0. In addition, the
parameter t0 effectively introduces an additive error term re-
lated to �0

t0h2���d� in the denominator of Eq. �38�. This error
term is, however, independent of the time variable t, and thus
potentially creates a constant offset in the EDC approxima-

tion curve Ê�·�. These two distinct effects will be illustrated
more specifically in the following section.

Finally, the infinite sums in Eq. �38� have to be truncated
to a finite set of indices in practice. As shown in Fig. 4, the

function ĥP�t� tends toward 0 very quickly as t increases, and
as a result, the summation can be terminated relatively early
while still providing a good approximation for practical pur-
poses.

IV. EXPERIMENTAL RESULTS

A. Numerical evaluations

This section provides some examples of the results ob-
tained with the proposed EDC approximation method. Figure
5 considers a typical enclosure setup, the details of which are
provided in Table I, for three different levels of reverberation
and assuming uniform reflection coefficients � for all enclo-
sure surfaces. The solid lines represent the energy decay
lines computed via Eq. �14� on the basis of the impulse re-
sponses simulated with the ISM technique of Sec. II B.
Circle markers ��� indicate the values obtained via Eqs. �32�
and �38� computed at several discrete values of time. Figure
6 shows similar results, obtained using a different room setup

0 0.1 0.2 0.3 0.4 0.5
−70
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E
D

C
(d

B
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FIG. 5. Examples of energy decay curves with uniform reflection coeffi-
cients. �a� �=0.669 �T20�0.05 s�, �b� �=0.831 �T20�0.1 s�, and �c� �
=0.889 �T20�0.15 s�. Solid lines represent E�t� obtained from ISM compu-
tations, circles ��� indicate values obtained with the proposed approximation

Ê�t�.

TABLE I. Parameter setup for the results presented in Figs. 5–7. Fs denotes
the sampling frequency.

Figure 5 Figures 6 and 7

r �m� �4.0,5.0,2.9�T �3.2,4.0,2.7�T

ps �m� �1.5,1.0,1.0�T �1.1,1.0,1.2�T

pr �m� �3.5,3.8,1.9�T �2.0,3.0,2.0�T

Fs �Hz� 16000 16000
n and A. M. Johansson: Energy decay in simulated room responses



�see Table I� in the case of nonuniform wall reflection coef-
ficients, the values of which are given in Table II. Note that
the curves in Fig. 6 correspond to a scenario where a pair of
opposing walls is significantly different in reflectivity com-
pared to other surfaces; this specific case was found to lead
to discrepancies between the estimated and measured rever-
beration times in the publication of Allen and Berkley.20

Despite several simplifying assumptions made in this
work, Figs. 5 and 6 demonstrate that the proposed EDC ap-
proximation technique is quite accurate when estimating the
energy decay in RIRs produced with the image-source
method. The overall decay rate, as well as the shape �curva-
ture� of the decay lines for nonuniform � coefficients, match
the practical results relatively well. With respect to the ef-
fects of the large-radius assumption mentioned previously,
these numerical results also illustrate the discrepancy be-
tween the approximated and the practical results at low t
values, which appears as a slight upward bias at the begin-
ning of the approximation curves. This effect becomes more
pronounced for larger reverberation times but remains none-
theless relatively negligible for most practical purposes.

It must be noted here that the results in Figs. 5 and 6
have been obtained with an optimal setting of the variable t0

�i.e., the time lag of the first value on the approximation
curves�. This effectively compensates for the constant error
term discussed in Sec. III D, and thus enables a better visual
comparison of the displayed results. In practice, a nonopti-
mal setting of t0 would hence result in a slight offset in the
corresponding EDC approximation curve. It was found em-
pirically that choosing t0=1.5· �ps−pr� /c or t0=1.5· r̄ /c
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FIG. 6. Examples of energy decay curves with nonuniform reflection coef-
ficients, for �a� T20�0.05 s, �b� T20�0.1 s, and �c� T20�0.15 s. See Table II
for the corresponding � values. Solid lines represent E�t� obtained from ISM

computations, circles ��� are values from the proposed approximation Ê�t�.

TABLE II. Values of reflection coefficients for each

Curve �x,1 �x,2

�a� T20�0.05 s 0.032 0.032
�b� T20�0.1 s 0.675 0.675
�c� T20�0.15 s 0.802 0.802
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achieves a relatively good match for a large array of enclo-
sure sizes and reflection coefficients. Note also that this off-
set only has a marginal effect when assessing the overall
energy decay of the considered RIR or when measuring
quantities such as the reverberation time. Reference 19 fur-
ther demonstrates the practical accuracy of the proposed
method by providing more results from extensive numerical
simulations.

Finally, the different plots in Fig. 7 provide an insight
into the influence of the discretization interval T in Eq. �38�.
This figure displays the approximation results for three dif-
ferent time lengths, computed with T20�0.1 s and for an
environmental setup as described in Table I. These results
clearly demonstrate the fact that the accuracy of the approxi-
mation remains very good regardless of the number of points
considered along the curve, which corroborates the validity
of the approximation in Eq. �37�. If necessary, the calcula-
tions can hence be made more computationally efficient by
reducing the number of points on the approximation curve,
with only a marginal reduction of the representation accu-
racy.

In addition to the practical results presented in this sec-
tion, the accuracy of the proposed technique has been further
tested and confirmed for a wide range of scenarios involving
different enclosure volumes, various source and sensor posi-
tions, as well as uniform and nonuniform reflection coeffi-
cients.

dary surface, for the curves displayed in Fig. 6.

�y,1 �y,2 �z,1 �z,2

.548 0.548 0.837 0.837
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FIG. 7. EDC approximation results with varying interval lengths, for T20

�0.1 s �see Table I for setup parameters�. The discretization interval is
defined as �a� T=0.014 s, �b� T=0.024 s, and �c� T=0.083 s.
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B. Application example

As discussed in Sec. I, the proposed EDC approximation
method can be used to efficiently determine which values of
reflection coefficients must be chosen to achieve a desired
reverberation level T20 in a given environment. This is illus-
trated here with the typical example of a 4
5
2.9 m3 room
with nonuniform wall absorption coefficients defined by the
following ratios:

��x,1:�x,2:�y,1:�y,2:�z,1:�z,2� = �1.0:0.9:0.7:0.6:0.4:0.3� ,

�39�

where the notation ��1 :�2 :�3 : ¯ � is used to describe a se-
ries of ratios between multiple variables, i.e., �1 :�2 ,�2 :�3,
etc. Using the method proposed in Sec. III, the approximate
EDC can be computed with varying values of absorption
coefficients �while ensuring that the ratios in Eq. �39� remain
satisfied�, until � parameters are found that yield the correct
reverberation time, i.e., the correct slope in the predicted
energy–time curve. Note that this optimization process is
very fast since each iteration consists only of a few numeri-
cal evaluations of the expressions in Eqs. �32� and �38�. The
frequency-domain ISM computation is then carried out ac-
cording to Sec. II B with the resulting � values, and the
“true” reverberation time is measured directly from the com-
puted RIR. For comparison, the same process is carried out
with two commonly used formulas for predicting the rever-
beration time, namely, Sabine’s equation,28

T20,Sab =
1

3

0.161V

�i=1
6 Si�i

, �40�

and Eyring’s equation,29

T20,Eyr =
1

3

0.161V

− S log�1 − �i=1
6 Si�i/S�

, �41�

where V is the room volume, S is the total surface area of the
enclosure, and Si and �i, i=1, . . . ,6, represent the surface
areas and absorption coefficients of each individual wall, re-
spectively. In the simulations, Eqs. �40� and �41� are used in
conjunction with Peterson’s ISM implementation22 with
positive reflection coefficients, as this represents the ap-
proach chosen by many authors in order to assess the perfor-
mance of various signal processing algorithms.

Table III presents the assessment results, which corre-

TABLE III. Desired vs measured reverberation times with nonuniform
sound absorption coefficients. The relative error percentage is displayed in
brackets.

Desired T20 �s�

Measured T20 �s�

Proposed Sabine Eyring

0.05 0.045 �10%� 0.048 �4%� 0.074 �48%�
0.10 0.092 �8%� 0.131 �31%� 0.161 �61%�
0.15 0.144 �4%� 0.212 �41%� 0.238 �59%�
0.20 0.201 �1%� 0.284 �42%� 0.311 �56%�
0.25 0.255 �2%� 0.352 �41%� 0.371 �48%�
0.30 0.318 �6%� 0.416 �39%� 0.438 �46%�
spond to an average over 20 randomly selected source–
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receiver configurations in the considered environment. These
results are shown for various desired values of the reverbera-
tion time T20, which is defined here as the time required by
the acoustic energy E�t� in the RIR to decrease from −5 to
−25 dB. Note that any other quantity could have been cho-
sen as a measure of reverberation: the developments pre-
sented in this paper are valid for any parameter of interest
defined on the basis of the EDC, such as T60, T30, early decay
time, etc.

As mentioned in Sec. I, Table III highlights the signifi-
cant discrepancies existing between the desired reverberation
level and that predicted with Sabine or Eyring’s formulas;
these expressions severely underestimate the value of the �
parameters, leading to reverberation times that are signifi-
cantly higher than targeted. On the other hand, because the
proposed method is based on a relatively accurate prediction
of the resulting acoustic energy decay, its reverberation time
estimates remain within a small percentage of the desired T20

values, even when the sound reflection coefficients are not
defined uniformly in the environment. In the specific context
of testing signal processing algorithms using ISM simula-
tions, this consequently minimizes the discrepancy between
the assumed and actual reverberation times and ensures a
minimal bias in the resulting performance assessment.

C. Computational requirements

As mentioned earlier, the computation of energy–time
curves by means of ISM-based simulations can be computa-
tionally very demanding. The EDC approximation method
proposed in this work alleviates this heavy computational
burden by providing a closed-form expression allowing the
quasi-instantaneous computation of a room’s EDC curve.

To highlight the computational advantages of the pro-
posed approach, Table IV presents the average CPU �central
processing unit� time required by each method for the com-
putation of an energy decay curve, as a function of the re-
verberation time T60. These results represent the average
over 80 EDC simulations carried out for various enclosures
with randomly generated dimensions and source–sensor con-
figurations. For the proposed approach, all EDCs were ap-
proximated with a constant discretization step T=0.005 s.
Both methods were implemented in the MATLAB programing
language with a sampling frequency Fs=8 kHz, and the
computations were carried out on a modern 2.0 GHz com-

TABLE IV. Average CPU times required for EDC computations at various
reverberation times T60, for ISM-based simulations and the proposed EDC
approximation method.

T60 �s�

CPU time �s�

Proposed ISM-based

0.1 0.0082 2.72
0.2 0.015 7.75
0.3 0.022 32.96
0.4 0.029 101.18
0.5 0.036 236.17
0.6 0.042 466.92
puter. For both methods, the computation of each separate
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EDC was terminated once the energy level in the RIR had
decreased by approximately 60 dB.

As demonstrated by the results in Table IV, the proposed
technique considerably reduces the computational require-
ments compared to ISM simulations. This computational ad-
vantage is even more significant with the multiple computa-
tion of one RIR, for instance, in the process of adjusting
sound reflection coefficients to achieve a desired reverbera-
tion time �as in the example of Sec. IV B�. Note also that the
computational requirements of the ISM-based simulations
further increase dramatically as the sampling frequency Fs is
increased.

V. CONCLUSIONS

This paper proposes a method for approximation of the
acoustic energy decay in simulated room impulse responses,
and demonstrates that this technique provides an accurate
prediction of the energy–time function generated on the basis
of a modified version of the widely used image-source
model. This method thus enables designers to efficiently in-
vestigate some of the acoustical characteristics of a simulated
room without the need to generate the impulse responses of
interest. Due to the considerable computational demands
usually associated with the image-source model, this conse-
quently represents a substantial reduction in the resulting
computational burden. Furthermore, the developments pre-
sented here explicitly establish an unequivocal connection
between environmental factors such as the walls’ absorption
coefficients and the level of reverberation resulting in the
considered enclosure. As shown in this work, this relation is
not currently well modeled by classical reverberation-time
formulas, especially with a nonuniform definition of the
sound absorption coefficients. In order to test audio process-
ing algorithms, the proposed method hence provides engi-
neers with a valuable tool to generate realistic impulse re-
sponses, whose main parameter of interest, namely the
reverberation level, can be effortlessly and accurately tuned.
The technique described in this paper can also be of potential
interest in other application fields such as virtual auditory
environments, perceptual acoustics, architectural design,
sound field modeling, etc.
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