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ABSTRACT

The problem of acoustic source localization and tracking (ASLT) in

reverberant environments by means of a microphone array consti-

tutes a challenging task from many viewpoints. One of the main is-

sues when considering real-world situations involving human speak-

ers is the presence of silence gaps in the speech, which can easily

send the tracking algorithm off-track, even in practical environments

with low to moderate noise and reverberation levels. This work is

concerned with an implementation of the ASLT algorithm proposed

in [1], which circumvents this problem by integrating measurements

from a voice activity detector (VAD) within the tracking algorithm

framework. The tracking performance of this method is tested exper-

imentally using audio data recorded in a real reverberant room. To

this purpose, we describe a quick and efficient way of determining

the ground-truth speaker location versus time, an operation that is

not always easy to perform. The experimental results confirm the im-

proved robustness of the method presented in [1] (compared to a pre-

viously proposed non-VAD ASLT algorithm) when tracking sources

emitting real-world speech signals, which typically involve signifi-

cant silence gaps between utterances.

1. INTRODUCTION

The concept of speaker tracking using an array of acoustic sensors

has become an increasingly important field of research over the last

few years [2–5]. Typical applications such as teleconferencing, au-

tomated multi-media capture, smart meeting rooms and lecture the-

aters, etc., are fast becoming an engineering reality. This in turns

requires the development of increasingly sophisticated algorithms

to deal efficiently with problems related to background noise and

acoustic reverberation during the speech acquisition process.

One of the major difficulties in a practical implementation of

ASLT for speech-based applications lies in the nonstationary char-

acter of typical speech signals, with potentially significant silence

periods existing between separate utterances. During such silence

gaps, currently available ASLT methods will usually keep updating

the source location estimates as if the speaker was still active. The

algorithm is therefore likely to momentarily lose track of the true

source position since the updates are then based solely on distur-

bance sources such as reverberation and background noise, whose

influence might be quite significant in practice. Consequently, exist-

ing works on speaker tracking implicitly rely on the fact that silence

periods in the speech signal remain relatively short [2–5].

The work presented in [1] deals with this specific issue by fusing

VAD observations within the statistical framework of a sequential
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Monte Carlo algorithm (particle filter, PF). Simulation results of this

algorithm, denoted PF-VAD, are provided in [1] on the basis of syn-

thetic audio data generated with the image method [6]. These sim-

ulations show that the newly proposed ASLT algorithm has the po-

tential to drastically outperform more basic PF implementations that

do not integrate VAD data, such as those presented in [3]. Whereas

the image method is useful for an initial test of ASLT algorithms, it

is only through experiments using real-world audio data that the real

performance of these methods can be gauged.

This paper focuses on a tracking performance assessment of the

PF-VAD algorithm presented in [1] using real audio data recorded

in a reverberant and noisy environment. The next section briefly re-

views the basics of the PF approach. A summary of the PF-VAD de-

velopments in [1] is then given in Sections 3 and 4. Section 5 finally

presents the results from experimental algorithm tests, followed by a

discussion of these results in Section 6.

2. BAYESIAN FILTERING FOR TARGET TRACKING

Consider an array ofM acoustic sensors distributed at known loca-

tions in a reverberant environment. Assuming a single sound source,

the problem consists in estimating the location of this “target” based

on the signals fm(t), m ∈ {1, . . . , M}, provided by the array. It
is further assumed that the sensor signals are sampled in time, and

subsequently decomposed into a series of successive frames k =
1, 2, . . . , of equal length L before being processed.

2.1) State-Space Filtering. LetXk represent the state variable for

time frame k, corresponding to the position and velocity of the target
in the state space:Xk = [xk yk ẋk ẏk]T. At any time step, each mi-
crophone in the array delivers a frame of audio signal which can be

processed using some localization technique, such as steered beam-

forming (SBF). Let Yk denote the observation variable (measure-

ment), which here typically corresponds to the localization informa-

tion resulting from the SBF processing of the audio signals. Using a

Bayesian filtering approach and assuming Markovian dynamics, this

system can be globally represented as follows:

Xk = g(Xk−1,uk) , (1a)

Yk = h(Xk,vk) , (1b)

where g(·) and h(·) are possibly nonlinear functions, and uk and vk

are possibly non-Gaussian noise variables. Ultimately, one would

like to compute the so-called posterior probability density function

(PDF) p(Xk|Y1:k), where Y1:k = {Y1, . . . ,Yk} represents the
concatenation of all measurements up to time k. This density con-
tains all the statistical information available regarding the current



condition of the state variable Xk, and an estimate bXk of the state

then follows, for instance, as the mean or the mode of p(Xk|Y1:k).

2.2) Sequential Monte Carlo Approach. Particle filtering (PF) is

an approximation technique that solves the above Bayesian filtering

problem by representing the posterior density as a set of N samples

of the state space X
(n)
k (particles) with associated weights w

(n)
k ,

n ∈ {1, . . . , N}, see, e.g., [7]. The so-called bootstrap algorithm
[8] is an attractive PF variant due to its simplicity and low com-

putational demands. Assuming that the set of particles and weights

{(X
(n)
k−1, w

(n)
k−1)}

N
n=1 is a discrete representation of the posterior

density at time k − 1, p(Xk−1|Y1:k−1), and given the observation
Yk obtained at the current time k, the bootstrap PF algorithm forms

a new set of particles and weights {(X
(n)
k , w

(n)
k )}N

n=1, which is an

approximate representation of the current posterior p(Xk|Y1:k). An

estimate ℓ̂k of the source position for the current time step k can then
be computed according to

ℓ̂k = E
˘
ℓk

¯
≈

XN

n=1
w

(n)
k ℓ

(n)
k ,

where ℓ
(n)
k = [x

(n)
k y

(n)
k ]T corresponds to the location information

in the n-th particle vector. A second output from the PF algorithm is
a measure of the confidence level in the PF estimates, which can be

obtained by computing the standard deviation of the particle set:

ςk =

r XN

n=1
w

(n)
k

‚‚ℓ
(n)
k − ℓ̂k

‚‚2
,

where ‖·‖ denotes the Euclidean norm. The parameter ςk provides a

direct assessment of how reliable the PF considers its current source

position estimate to be.

3. PF FOR ACOUSTIC SOURCE TRACKING

The bootstrap PF algorithm requires the definition of two impor-

tant concepts [8]: the source dynamics, through the transition func-

tion g(·), and the so-called likelihood function p(Yk|X
(n)
k ), n ∈

{1, . . . , N}.

3.1) Target Dynamics. In order to remain consistent with previous

ASLT literature [3, 4], a Langevin process is used to model the dy-

namics equation (1a). This process is typically used to characterize

various types of stochastic motion, and it has proved to be a good

choice for speaker tracking. With this model, the source motion in

each of the Cartesian coordinates is assumed to be an independent

first-order Markov process.

3.2) Likelihood Function. The SBF principle is used here as a

basis for the derivation of the likelihood function. With Fm(ω) =
F{fm(t)} the Fourier transform of the signal data from the m-th
sensor, the output P(ℓ) of a delay-and-sum beamformer steered to
the location ℓ = [x y]T is given as

P(ℓ) =

Z

Ω

˛̨
˛

XM

m=1
Wm(ω)Fm(ω) ejω‖ℓ−ℓm‖/c

˛̨
˛
2

dω , (2)

where c = 343m/s is the speed of sound, ℓm = [xm ym]T is the
known position of the m-th microphone, and Ω corresponds to the
frequency range of interest, typically defined for speech processing

applications as Ω = {ω | 2π ·300Hz 6 ω 6 2π ·3000Hz}. The fre-
quency weighting term Wm(·) is computed according to the PHAT
(phase transform) weighting, i.e.,Wm(ω) = 1/|Fm(ω)|.

In the PF-VAD implementation, an approach based on the con-

cept of a “pseudo-likelihood” is adopted, as introduced previously

in [3]. This concept relies on the idea that the SBF output P(·) it-
self can be used as a measure of likelihood. For the n-th particle, the
likelihood PDF is hence defined as

p(Y|X(n)) = q0 · U(ℓ
(n)
k ) + γ (1 − q0) ·

ˆ
P(ℓ

(n)
k )

˜r
, (3)

where U(·) is the uniform PDF defined over the considered room
boundaries, q0 is the prior probability that an SBF measurement

might originate from clutter, and the nonlinear exponent r is used
to help shape the SBF output to make it more amenable to source

tracking [3]. The parameter γ is a normalization constant ensuring
that the two PDFs in the mixture likelihood definition of (3) are prop-

erly scaled with respect to each other [1].

4. FUSION OF VADMEASUREMENTS

4.1) Voice Activity Detection. The voice activity detector (VAD)

employed in [1] relies on an estimate of the instantaneous signal-to-

noise ratio (SNR) in the current signal frame. It assumes that the data

recorded at the microphones is an additive combination of the clean

speech signal and noise.

The scheme works on the basis of the average noise power spec-

tral density, which is estimated during nonspeech periods. The esti-

mated noise level, which is assumed to vary slowly in relation to the

speech power, is then used during periods of speech activity to esti-

mate the SNR from the observed signal. The assumption is that the

speaker is active when the frequency-averaged SNR level is higher

than a given threshold, which is set in such a way as to minimize the

occurrence of false alarms. The specific application considered here

also makes it possible to reduce the variance of the signal power es-

timates by averaging over multiple microphones.

4.2) VAD Fusion. The output of the VAD can be linked to the

probability q0 in (3) in an obvious manner. The probability 1 − q0

corresponds to the likelihood of the acoustic source being active

(non-clutter SBF measurement), an estimate of which is delivered

by the VAD. Therefore, instead of setting the variable q0 to a con-

stant value in the design of the algorithm as done in [3, 4], the fol-

lowing time-varying definition of q0 is used: q0(k) = 1 − α(k),
with α(k) ∈ [0, 1] the soft-decision output from the VAD algorithm
(where 1 denotes speech and 0 nonspeech). In the current implemen-
tation,α(k) corresponds to the estimated speech signal level, derived
from the SNR and noise power estimates delivered by the VAD.

The generic PF algorithm resulting from the developments pre-

sented so far is denoted PF-VAD.

5. EXPERIMENTAL RESULTS

This section presents the tracking results obtained with algorithm

PF-VAD for real audio data. The various parameters of the PF-VAD

implementation were optimized empirically and defined as N = 50
and r = 2. The audio signals were sampled with a frequency FS =
16 kHz and decomposed into frames of L = 512 samples each. For
comparison purposes, the performance assessment presented in this

section also includes results from algorithm SBF-PL, a sound source

tracking scheme previously proposed in [3]. The SBF-PL method

relies on a particle filtering approach similar to that presented here,

but does not include any VAD measurements.



5.1) Performance Assessment Parameters. The PF estimation

error for the current frame is εk = ‖ℓS,k − ℓ̂k‖, where ℓS,k is the

ground-truth source position at time k. In order to assess the overall
performance of the algorithm under test over a given sample of audio

data, the average error is simply computed as ε̄ =
` PK

k=1 εk

´
/K,

with K representing the total number of frames in the considered
audio sample.

Due to the partially random nature of PF implementations, sta-

tistical averaging over a large number D of algorithm runs is used in
the results presentation. A parameter of particular interest to ASLT

is the percentage of these runs for which the tracking algorithm com-

pletely loses track of the target during the simulation, typically due

to significant silence gaps in the speech. For each simulation run

d ∈ {1, . . . , D}, a track loss parameter is thus defined as

ξd =

(
1 if

` PK
k=K−k∗ εk,d

´
/(k∗ − 1) > δ ,

0 otherwise ,

where k∗ = ⌈0.5 ·FS/L⌉. The parameter ξd effectively checks if the

average estimation error over the last 0.5 s of audio data is smaller
than some threshold, set here to δ = 0.1m, i.e., whether the algo-
rithm is still correctly tracking the target at the end of the simulation

run. The global track loss percentage (TLP) ξ̄ for a given audio sam-
ple is then defined as ξ̄ =

` PD
d=1 ξd

´
/D.

5.2) Microphone Array Setup. An array of M = 8 omnidirec-
tional microphones was set up at a constant height of 1.51m in a
room with dimensions 3.5m × 3.1m × 2.2m, in a square fashion
with one sensor pair centered on each side of the square (distance

of 0.8m between the sensors in each pair). The area spanned by the
array was 2.52m× 2.52m.
Two different types of environment were considered. In the first

one, the walls of the enclosure were fully padded with sound-ab-

sorbing panels (no padding on the floor and ceiling), leading to a

practical reverberation time T60 ≈ 0.27 s (frequency-averaged up
to 24 kHz). In the second environment, parts of the padding were
removed, increasing the reverberation to T60 ≈ 0.34 s. In each envi-
ronment, two different signal sources were used. The first one was a

male speaker, moving randomly across the room while uttering a se-

ries of sentences separated by silence gaps. The second source was

a loudspeaker emitting a female speech signal (also containing si-

lence gaps). The loudspeaker was carried randomly across the room

during the recordings in order to simulate a mobile source. For each

speaker–environment combination, a total of five recordings were

taken, each corresponding to a different trajectory and source signal.

In both environments, background noise was recorded separately

(i.e., with no speech source present) by means of a series of loud-

speakers emitting either average white Gaussian noise (AWGN) or

babble noise. The recordings of these noise signals were then com-

bined additively to the speech signals with varying SNR levels in

order to generate the input data to the tracking algorithm. This way

of splitting the noise and speech recordings specifically allowed the

measurement of ground-truth source location data according to the

method described below.

5.3) Source Position Measurements. In order to achieve an accu-

rate assessment of the tracking performance, it is necessary to obtain

ground-truth measurements of the real speaker trajectory during the

recordings. A few methods have been proposed and used in previous

literature works to this purpose, typically based either on some sort

of mechanical system [9], or using the location estimates obtained

from a different measurement modality, such as visual tracking [10].
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Fig. 1. Ground-truth source position from microphone array data.

Top plot: example of recorded sensor signal. Bottom plot: high-

accuracy SBF localization data (×) and polynomial trajectory in-
terpolation (dotted line), for the x coordinate.

These approaches however generate considerable difficulties related

to, e.g., synchronization of different data streams (audio and video),

the inability to use real human speakers in some cases, and most of

all, substantial hardware and software setup costs.

In the present work, a different approach is used: the ground-

truth location data is extracted directly from the recorded audio data

by means of a high-accuracy beamformer scanning the considered

enclosure. The microphone signals are split into successive frames

of 32ms of data, with a 50% overlapping factor. Each frame is pro-
cessed using the SBF formula in (2), at first computed on a relatively

coarse grid across the entire search space. A coarse estimate of the

current source position is obtained as the location maximizing this

SBF output, and this estimate is then refined by considering a high-

resolution grid (uniform 1mm spacing between grid points) centered
around the region of interest, i.e., around the coarse location esti-

mate. An approximate knowledge of the overall source path across

the room, combined with the use of some voice activity detection

scheme, allows the easy discrimination of outliers and yields a series

of two-dimensional location data points vs. time, as shown in Fig-

ure 1 for the x coordinate (results for the y dimension are similar).
This plot presents the ground-truth SBF measurements for a sam-

ple of audio data recorded with the male speaker in the non-padded

room setup (T60 ≈ 0.34 s). Finally, a polynomial approximation can
be fitted to the SBF localization data in order to obtain an estimate

of the true source trajectory over the entire audio sample length.

The approach described here has the main advantage of produc-

ing source position data that is automatically synchronized to the au-

dio signals, and requires no additional hardware setup costs. It also

allows any kind of sound source to be used along any arbitrary tra-

jectory, and it has proved to work particularly well for the controlled

environment considered in this work. It is estimated that the ground-

truth location data generated with this method is accurate to within

a couple of centimeters of the true source trajectory.

5.4) Experimental Results. Figure 2 shows a typical tracking ex-

ample for PF-VAD, obtained for a male speaker recording in the

padded environment (T60 ≈ 0.27 s) with 15 dB SNR (white noise).
This plot clearly demonstrates how the particle set spatially expands

during nonspeech periods (increasing standard deviation ςk), allow-

ing the algorithm to keep track of the silent target and successfully



T60 ≈ 0.27 s T60 ≈ 0.34 s
male female male female

AWGN 5 dB
error ε̄ 0.488 0.558 0.860 0.869

TLP ξ̄ 73.8 93.5 100.0 100.0

AWGN 10 dB
error ε̄ 0.071 0.114 0.280 0.724

TLP ξ̄ 1.9 23.0 66.3 100.0

AWGN 15 dB
error ε̄ 0.047 0.065 0.143 0.358

TLP ξ̄ 1.9 14.5 35.6 91.5

babble 5 dB
error ε̄ 0.049 0.099 0.178 0.374

TLP ξ̄ 3.8 24.5 39.4 93.5

babble 10 dB
error ε̄ 0.044 0.072 0.106 0.332

TLP ξ̄ 1.9 17.5 20.6 92.0

babble 15 dB
error ε̄ 0.047 0.062 0.092 0.329

TLP ξ̄ 4.4 12.0 17.5 92.0

Table 1. Tracking performance results for PF-VAD algorithm: aver-

age estimation error ε̄ (m) and track loss percentage ξ̄ (%).
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Fig. 2. Tracking result example for PF-VAD. Top plot: example of

recorded sensor signal. Bottom plot: source trajectory (dotted line),

position estimates ℓ̂k (solid line), and standard deviation ςk (dashed

line), in x dimension (results for the y coordinate are similar).

resume an accurate tracking when the source becomes active again.

The results presented in Tables 1 and 2 show the average track-

ing performance obtained with the real-audio recordings for PF-VAD

and SBF-PL, respectively. Each result in these tables represents an

average computed over 250 values, corresponding to 50 algorithm

runs carried out for each of the five audio samples recorded in a given

speaker–environment configuration. A comparison between these ta-

bles shows that PF-VAD results are consistently better than those

obtained for SBF-PL.

6. DISCUSSION

Some of the considered tracking scenarios in the above experiments

still prove too difficult to deal with for both tested algorithms, yield-

ing large errors and TLP factors. Apart from the reverberation and

noise levels, the degree of tracking difficulty is typically determined

by the specific target trajectory (sharp turns), the frequency content

of the source signal (male vs. female), and the type of acoustic source

utilized (human vs. loudspeaker). The results presented in this work

however demonstrate the superiority of PF-VAD compared to a sim-

ilar PF implementation that does not integrate VAD data. The VAD-

T60 ≈ 0.27 s T60 ≈ 0.34 s
male female male female

AWGN 5 dB
error ε̄ 0.646 0.466 0.765 0.831

TLP ξ̄ 85.6 90.0 97.5 95.5

AWGN 10 dB
error ε̄ 0.560 0.441 0.726 0.796

TLP ξ̄ 78.1 83.0 92.5 95.0

AWGN 15 dB
error ε̄ 0.380 0.349 0.662 0.785

TLP ξ̄ 66.9 71.5 86.9 93.0

babble 5 dB
error ε̄ 0.618 0.553 0.902 0.662

TLP ξ̄ 83.1 90.5 98.1 96.0

babble 10 dB
error ε̄ 0.455 0.450 0.787 0.650

TLP ξ̄ 75.0 87.0 92.5 96.5

babble 15 dB
error ε̄ 0.300 0.424 0.764 0.633

TLP ξ̄ 62.5 81.0 93.1 96.5

Table 2. Tracking performance results for SBF-PL algorithm: aver-

age estimation error ε̄ (m) and track loss percentage ξ̄ (%).

based algorithm presented in [1] is more efficient at avoiding track

losses during significant speech inactivity periods, and is therefore

better suited for practical ASLT implementations.
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