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ABSTRACT

Methods for acoustic speaker tracking attempt to localize and track

the position of a sound source in a reverberant environment using

the data received at an array of microphones. This problem has

received significant attention over the last few years, with meth-

ods based on a particle filtering principle perhaps representing one

of the most promising approaches. As a Bayesian filtering tech-

nique, a particle filter relies on the definition of two main concepts,

namely the measurement process and the transition equation (tar-

get dynamics). Whereas a significant research effort has been de-

voted to the development of improved measurement processes, the

influence of the dynamics formulation on the resulting tracking ac-

curacy has received little attention so far. This paper provides an

insight into the dynamics modeling aspect of particle filter design.

Several types of motion models are considered, and the perfor-

mance of the resulting particle filters is then assessed with exten-

sive experimental simulations using real audio data recorded in a

reverberant environment. This paper demonstrates that the ability

to achieve a reduced tracking error relies on both the chosen model

as well as the specific optimization of its parameters.

1. INTRODUCTION

As a Bayesian filtering approach, the development of a particle fil-

ter (PF) for the acoustic speaker tracking (AST) problem requires

the definition of two important concepts [1, 2]:

1) the measurement or observation PDF (probability density func-

tion), also known as the likelihood function; and

2) the transition PDF, based on a model describing the specific

dynamics of the considered target (speaker).

In the currently available AST literature [3–5], a significant re-

search effort focusses on the development of improved measure-

ment densities, and very little attention is given to the type of mo-

tion model implemented in the algorithm. Originally defined in [3],

the so-called “Langevin” dynamics constitutes the generic model

of choice routinely implemented in these AST publications. How-

ever, no extensive justification was given as to why this specific

model was originally selected. The present research provides some

insight into the influence of the assumed dynamics (and the opti-

mization of its parameters) on the overall tracking performance for

AST. It must be emphasized that this work does not aim to find an

optimal dynamics formulation for the problem at hand; this goal

typically relies on a specialized parameter optimization process,

which is currently the object of ongoing research.
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There exist many different motion models suitable for an im-

plementation in relation to the AST problem [6]; an exhaustive list

can be found, for instance, in [7]. The present work considers a

small subset of models which appear promising for such an im-

plementation. Of particular interest is the specific behavior of the

resulting PF algorithm during the silence gaps existing between

separate utterances in a typical speech signal. A PF method was

recently proposed in [4] which takes into account the measure-

ments obtained with a voice activity detector (VAD). This algo-

rithm, denoted PF-VAD, was developed on the basis of the usual

Langevin dynamics, and as demonstrated in [8], this leads to the

tracker effectively “freezing” its estimate and spreading the par-

ticles uniformly in all directions as soon as the speaker becomes

silent. In essence, this corresponds to the assumption that a person

is equally likely to move in any direction at any point in time; with

a uniform spreading of the particles, the algorithm hence “tracks”

any potential speaker motion while no observations are available.

This approach is however not fully relevant for practical sce-

narios: typically, speakers moving in a given environment rarely

exhibit abrupt changes in direction and velocity. In other words,

it is more realistic to assume that during (short) silence gaps, the

speaker’s motion remains similar to that displayed shortly before

the speech interruption. Integrating this specific property of mo-

tion continuity within the tracking algorithm would hence lead

to a superior tracking performance and an increased robustness

against disturbances (noise, competing speakers, etc.). As shown

in this paper, this can be achieved with a careful choice of dynam-

ics model and an appropriate tuning of the model parameters.

In this work, the considered dynamics models are implemented

in conjunction with the PF-VAD algorithm of [4]. The next sec-

tion hence presents a brief review of this algorithm. Section 3 then

describes the various models under consideration, and the perfor-

mance results obtained from experimental simulations of the re-

sulting PF algorithms are finally presented in Section 4.

2. PF-VAD ALGORITHM REVIEW

2.1. Basic Principle

Assume that an array of M acoustic sensors is set up in a given

environment. LetXk represent the state variable for time index k,
corresponding to the position ℓk = [xk yk]T and velocity ℓ̇k =
[ẋk ẏk]T of the speaker in the state space:Xk = [xk yk ẋk ẏk]T.
Also, let Yk denote the measurement variable, which corresponds

to the localization information obtained from the output P(ℓ) of
a delay-and-sum beamformer, steered to the location ℓ = [x y]T,
and computed for each frame k of signal data from the sensors.
A Bayesian filtering approach to the tracking problem attempts

to determine, for each time step k, the so-called posterior density
p(Xk|Y1:k), where Y1:k = {Y1, . . . , Yk} represents the concate-
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nation of all measurements. From a statistical viewpoint, the pos-

terior PDF contains all the information available regarding the cur-

rent condition of the state variableXk, and an estimate bXk of the

state then follows, e.g., as the first-order moment of this density.

Particle filtering is an approximation technique that solves the

Bayesian filtering problem by representing the posterior PDF as a

set of N samples X
(n)
k of the state space (particles) with associ-

ated weights w
(n)
k , n ∈ {1, . . . , N} [1]. The PF-VAD algorithm

is based on the so-called bootstrap PF [2], whose generic principle

can be described as follows. Assume that the set of particles and

weights {(X (n)
k−1, w

(n)
k−1)}

N
n=1 is a discrete representation of the

posterior p(Xk−1|Y1:k−1). Given the observation Yk obtained at

time k, update each particle n ∈ {1, . . . , N} as follows:

1. Prediction: propagate the particles through the transition equa-

tion eX (n)
k = g(X

(n)
k−1, uk), where uk is a noise variable.

2. Update: assign a likelihood weight to each new particle accord-

ing to w̃
(n)
k = w

(n)
k−1· p(Yk| eX (n)

k ), then normalize the weights:

w
(n)
k = w̃

(n)
k

. “ XN

i=1
w̃

(i)
k

”
.

3. Resampling: draw N new samples X
(n)
k from the existing set

of particles { eX (i)
k }N

i=1 according to their weights w
(i)
k , then

reset the weights to uniform values: w
(n)
k = 1/N , ∀n.

As a result, the new set {(X (n)
k , w

(n)
k )}N

n=1 is approximately dis-

tributed as the posterior p(Xk|Y1:k). An estimate of the speaker’s

position is then obtained as ℓ̂k =
PN

n=1 w
(n)
k ℓ

(n)
k , where ℓ

(n)
k cor-

responds to the location of the n-th particle:X
(n)
k , [ℓ

(n)
k ℓ̇

(n)
k ]T.

In the PF-VADmethod, the likelihood p(Yk|Xk) is defined as
a mixture density involving the beamformer output P(·), as well
as the current VAD state. The algorithm also requires a model rep-

resenting the state dynamics in terms of the transition equation

Xk = g(Xk−1, uk). The specific definition of this function, and
the analysis of its influence on the tracking results, constitutes the

object of focus in the present work. Readers are referred to [4] for

more information regarding the PF-VAD implementation.

2.2. Performance Assessment Parameters

The PF estimation error for the k-th frame is εk =
‚‚ℓS,k − ℓ̂k

‚‚,
where ℓS,k is the ground-truth source position. In order to assess

the global tracking performance of the algorithm over K frames
of audio data, the average error is computed as the RMSE (root-

mean-square error) parameter

ε̄ =

r
1

K

XK

k=1
ε2

k .

Due to the partially random nature of PF implementations, sta-

tistical averaging over a numberD of algorithm runs is used in the
results presentation. A parameter of particular interest to AST is

the percentage of these runs for which the tracking algorithm com-

pletely loses track of the target during the simulation, typically due

to significant silence gaps in the speech or an incorrect setting of

the model parameters. For each simulation run d ∈ {1, . . . , D}, a
track loss parameter is thus defined as

ζd =
n

1 if
` PK

k=K−k∗
εk,d

´
/(k∗ − 1) > δ ,

0 otherwise ,

where k∗ = ⌈0.5/T ⌉ and T represents the time update period
(from time k to k + 1). The parameter ζd effectively determines

whether the average estimation error over the last 0.5s of audio
data is smaller than some threshold δ = 0.1m, i.e., whether the
algorithm is still correctly tracking the target at the end of the sim-

ulation run. The global track loss percentage (TLP) ζ̄ (in %) for a
given audio sample is then defined as ζ̄ = (100/D) ·

PD

d=1 ζd.

3. DYNAMICS MODELING

3.1. Model Types

As mentioned previously, several dynamics models represent po-

tential candidates for an implementation in the frame of AST [6, 7].

In the following, two main model types are investigated:

1) Coordinate-uncoupled (CU) dynamics represent the target’s ve-

locity in a Cartesian coordinate setting, with the state vector

typically defined asXk , [xk yk ẋk ẏk]T. By definition, this
type of manoeuvre model assumes a negligible coupling be-

tween coordinates, and only one generic variable (chosen here

to be x) needs to be considered in the derivations.

2) Curvilinear (CL) models represent the target’s velocity vector

vk using a polar coordinate system, i.e., in terms of its mag-

nitude vk = ‖vk‖ and its orientation angle ϕk with respect

to the x-axis. The dynamics for ϕk can be considered through

the target’s normal acceleration ak using the kinematics equa-

tion of a uniform circular motion: ak = vk · ϕ̇k. With this ap-

proach, the state vector follows asXk , [xk yk vk ak]T, with
the target’s heading angle then resulting indirectly as ϕk =
ϕk−1 + Tak/vk , and the target’s position as xk = xk−1 +
Tvk cos(ϕk) and yk = yk−1 + Tvk sin(ϕk).

Additionally, for any given state variable ξ (e.g., target’s velocity
or acceleration), the transition equation can be defined either as:

1) a random-walk (RW) process with variance σ2
ξ , that is, ξk =

ξk−1 + σξ · uk, with uk ∼ N (0, 1); or

2) a time-correlated (TC) process with variance σ2
ξ and correla-

tion time constant 1/βξ , whose discrete-time formulation is

ξk = e−βξT · ξk−1 + σξ

p
1 − e−2βξT · uk , uk ∼ N (0, 1) .

Finally, different representations also result depending on the con-

sidered model order, i.e., whether the model makes use of the tar-

get’s velocity or acceleration in the state vector.

The different combinations of the above choices (model type,

model order, and time-correlation vs. random-walk) lead to a pro-

hibitively large number of dynamics formulations to assess. This

work only considers a handful of models, whose implementation

in relation to the AST problem definition is deemed promising or

of some interest. The following subsection enumerates these dif-

ferent models, with the generic noise variables uk, u′

k ∼ N (0, 1).

3.2. Considered Models

1) CU-RWV: CU model with RW velocity,
»
xk

ẋk

–
=

»
1 T
0 1

–
·

»
xk−1

ẋk−1

–
+

»
T/2
1

–
· σv uk .

2) CU-TCA: CU model with time-correlated acceleration [7],
2
4

xk

ẋk

ẍk

3
5=

2
4
1 T α1

0 1 α2

0 0 e−βaT

3
5·

2
4

xk−1

ẋk−1

ẍk−1

3
5+

2
4

T 2/2
T
1

3
5·σa

p
1−e−2βaT ·uk,

with α1 = (βaT − 1 − e−βaT )/β2
a , and α2 = (1 − e−βaT )/βa.
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3) CU-LAN: CU model with Langevin dynamics [3],

»
xk

ẋk

–
=

»
1 T e−βvT

0 e−βvT

–
·

»
xk−1

ẋk−1

–
+

»
T
1

–
·σv

p
1 − e−2βvT ·uk .

4) CL-RWV-RA: CL model, RW velocity, random acceleration,

»
vk

ak

–
=

»
1 0
0 0

–
·

»
vk−1

ak−1

–
+

»
σv uk

σa u′

k

–
.

5) CL-RWV-RWA: CL model with RW velocity and acceleration,
»
vk

ak

–
=

»
1 0
0 1

–
·

»
vk−1

ak−1

–
+

»
σv uk

σa u′

k

–
.

3.3. Parameter Optimization

Each of the above models contains at least one free parameter that

requires to be optimized (variance σ and/or rate constant β). In the
frame of AST, these parameters should ideally be optimized by

considering a large number of speakers, rooms, array setups and

speaker trajectories, in various environments with different SNR

and reverberation levels. The acquisition of such a large amount

of real-world data constitutes a significant practical challenge. A

simplified approach is used in the present paper, whose main goal

is to provide some insight into how the use of a specific dynamics

model can influence the tracking accuracy of a PF algorithm. For

this purpose, the model parameters are coarsely optimized using a

series of real audio samples recorded in an environment with re-

verberation time T60 ≈ 0.27s and approximate background noise
SNR ≈ 20dB (white noise). The results obtained from this pa-
rameter tuning process are summarized in Table 1. The model de-

noted CU-LAN-ORIG corresponds to the Langevin formulation

given in Section 3.2.3) with its parameter values set as defined in

most of the current AST literature (i.e., non-optimized Langevin

dynamics); this specific definition is included here as a compara-

tive benchmark for other models.

4. EXPERIMENTAL SIMULATIONS

4.1. Practical Recording Setup

An array of M = 8 microphones is placed at a constant height
in a room with dimensions 3.5m × 3.1m × 2.2m, with one sen-
sor pair centered on each wall. The distance between the sensors

in each pair is 0.8m. The walls are partially covered with acous-
tic foam, leading to a practical reverberation time T60 ≈ 0.27s
(frequency-averaged up to 24kHz). Audio samples of background
noise are recorded separately from the speech signals, and used

in the simulation phase to generate specific values of SNR. The

availability of clean speech signals further allows the precise mea-

surement of the speaker trajectory directly from the audio data in

each scenario, using the method presented in [8]: the microphone

signals are processed with a high-precision beamformer deliver-

ing accurate localization estimates, with outliers easily discarded

based on the approximate knowledge of the source trajectory.

4.2. Tracking Example

Each of the considered dynamics models is implemented within

the PF-VAD framework with N = 75 particles. These different
algorithms are then simulated using an example of speaker trajec-

tory, with an approximate SNR level of 20dB (white noise, long-
term average). Fig. 1 presents the tracking results obtained with

each of the considered models, with Fig. 2 showing an example of

Model σv βv σa βa

CU-RWV 0.05 - - -

CU-TCA - - 2 30

CU-LAN 0.7 0.2 - -

CU-LAN-ORIG 0.8 10 - -

CL-RWV-RA 0.07 - 1.5 -

CL-RWV-RWA 0.3 - 2 -

Table 1: Selected values for each model parameter. β values are
given in Hz, σv values in m/s, and σa values in m/s

2.

audio signal recorded with one of the array sensors for this sim-

ulation. The plots in Fig. 1 show the PF’s x-location estimate av-
eraged over 50 simulation runs for each model (results for the y
dimension are similar).

These results clearly illustrate that some of the considered

models are able to implement the desired property of “continued

motion”, i.e., maintain a proper heading and velocity during si-

lence gaps. Based on the assumption that the speaker is unlikely

to exhibit abrupt direction and velocity changes, this consequently

results in a superior tracking performance. On the other hand, the

non-optimized model CU-LAN-ORIG essentially stops tracking

whenever no measurements are available, as previously observed

in [4, 8]. The model CL-RWV-RWA also presents the same weak-

ness, perhaps due to a poor parameter optimization or an inappro-

priate representation of the target dynamics. Interestingly, the opti-

mized version of the Langevin model CU-LAN achieves very good

results, which leads to the important observation that an improved

tracking behavior depends not only on the type of dynamics model,

but also strongly relies on an optimal tuning of its parameters.

Finally, an aspect of particular importance to consider in Fig. 1

is the resulting standard deviation of the particle set during silence

periods. The process of spreading the particles when no observa-

tions are available is what allows the algorithm to successfully re-

sume tracking once the speaker becomes active again, in the even-

tuality that the target has slightly changed its course during the

silence gap. It can be seen from Fig. 1 that most models achieve a

satisfactory performance from this point of view, which suggests

that the various model parameters in Table 1 are set to meaning-

ful values; setting these values too tightly might result in the PF

algorithm not being able to spread the particles fast enough.

4.3. Average Performance vs. SNR

While most models have shown to achieve successful tracking re-

sults at 20dB SNR, a risk exists that the chosen parameter values
restrict their performance when the SNR decreases. Fig. 3 presents

the performance results for each model as a function of the SNR

level. For each SNR value, these results were averaged over a to-

tal of 240 simulation runs, corresponding to 60 runs carried out

for each of four different audio recordings representing different

speaker trajectories and speech signals.

Fig. 3 shows a similar trend for most of the considered mod-

els, with a breakdown of the tracking performance as the SNR de-

creases below approximately 5 or 10dB. This suggests that none
of these methods suffers from a drastically erroneous setting of its

parameters (except perhaps for CL-RWV-RA). The non-optimized

Langevin model CU-LAN-ORIG has a decreased overall tracking

performance (larger RMSE results) due to an increased tracking

error during periods of speech inactivity. Here too, a distinct im-

provement in the tracking accuracy is observed for CU-LAN when

compared to the non-optimized version CU-LAN-ORIG.
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PF estimates, and dashed lines represent plus/minus one standard deviation of the particle set (average particle spread in the x dimension).
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Figure 3: Tracking performance versus SNR level.

5. CONCLUSION AND FUTURE RESEARCH

The work presented in this paper provides a preliminary study on

the use of various dynamics models in the frame of a Bayesian

approach to acoustic source tracking. It was shown that the dy-

namics model implemented in the tracking algorithm can play a

potentially significant part in achieving superior tracking results,

with both the CU as well as the CL model types having the po-

tential to provide a more accurate tracking of the speaker during

periods of speech inactivity. Rather than simply freezing its es-

timate, the tracking algorithm can be made to “blindly” track the

speaker when no measurements are available. This ultimately leads

to a decreased chance of track loss when the speech resumes, and

consequently, an improved robustness against noise, reverberation,

and competing speakers. Finally, it was also demonstrated that the

successful implementation of a tracking algorithm does not solely

rely on choosing a specific model type; the process of optimizing

the model parameters also plays a crucial part in the accuracy of

the resulting algorithm. The critical issue is hence to obtain a set of

parameter values achieving a robust tracking performance, while

being able to deal successfully with a wide range of target mo-

tions; a tradeoff might have to be found between these two factors

in practice. An ongoing research effort is currently focussing on

a rigorous and efficient optimization method for dynamics models

in the design of an algorithm for acoustic source tracking.
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